
Control and Cybernetics

vol. 41 (2012) No. 4

Bidding languages for auctions of divisible goods∗

by

Mariusz Kaleta

Warsaw University of Technology
Institute of Control and Computation Engineering

Abstract: Bidding languages are well-defined for combinatorial
auctions. However, the auctions of divisible goods are quite com-
mon in practice. In contrast to combinatorial auctions, the feasible
volumes of the offers are continuous in the case of divisible com-
modities. Such auctions are called continuous auctions. In the pa-
per we introduce three families of bidding languages for continuous
auctions. They are based on the concepts derived from the combina-
torial auctions. We generalize the language families based on goods,
bids, and some mixture of both of them, to the continuous case. We
also analyze fundamental properties of the new languages. Simple
examples, reflecting the complementarity and substitutability, are
provided with exemplary representations in different languages.

Keywords: bidding languages, auctions, market mechanism
design

1. Introduction

Market mechanisms are entering into new areas of life. From the beginning of
this century one can observe rapidly increasing number of organized markets,
mainly auctions, both on the retail and wholesale markets. Electronic auction
mechanisms are visible in the Internet at specialized web pages, including those
most recognizable, like eBay. But they are also being introduced into other
web services, e.g. social networks, where availability of additional information
enables the new functionalities. A trend to real-time operation is one of the
main drivers for electronic trade on the wholesale markets. The increasingly
competitive conditions have led to several management concepts like real-time
enterprises or dynamic supply chains. Besides more competitive conditions, the
nature of traded commodities forces the need of trading in nearly real time,
that is, electronic markets are entering into markets of real-time commodities,
e.g. telecommunication bandwidth, electrical energy, and so on. As a result
of these trends, the new requirements and needs for new functionalities are

∗Submitted: October 2012; Accepted: November 2012



800 M. Kaleta

clear. The question how to built, integrate and manage the information systems
for running the electronic auctions is addressed in a stream of studies, e.g.
Benyoucef and Pringadi (2006), Kaleta and Traczyk (2012), Rolli and Eberhart
(2005). Current research is focused on designing methodologies for auction
systems. The reusability, extensibility, simplicity of deployment are the key
aspects of the methodologies. Many works propose multi-agent approaches, e.g.
Rolli and Eberhart (2005), which make incentives for strong automation of the
trade. For example, in Benyoucef and Pringadi (2006) a BPEL based approach
is proposed to achieve high flexibility in auction protocols.

One of the important problems in the context of electronic auction system
designs is a bidding language (Nisan, 2000). A bidding language is a tool to
represent valuations of a given agent to the market. From the point of view of
particular agent, the overall evaluation of the market system strongly depends
on the functionality that this tool gives to the agents. There are three criteria
for evaluation of the bidding languages. The first is the expressive power, that
is, what kind of valuations an agent can express using the particular bidding
language. The second criterion is its succinctness – how verbose is a given
language and as a result, how much memory it requires to store the bids. And
the last one is the complexity and logical foundations of a given language from
the agent point of view.

Expressive, but simple languages may involve exponential growth of data
describing a bid when the number of commodities increases. A utility function
of a given agent often has some logical structure. The question is, whether
a given language enables to exploit this structure in the bids. If so, the bids
should be more convenient for the agents. Moreover, it usually leads to more
succinct language. The succinctness is important for communication protocols
and data management.

There is a wide stream of studies devoted to bidding languages for combina-
torial auctions (Boutilier and Hoos, 2001; Lehmann at al., 2006; Nisan, 2000).
We discuss the achievements in this field further in the paper. However, in
the current literature, relatively little attention has been paid to auctions of
divisible goods, which are quite common in practice. We call such auctions the
continuous auctions since the feasible volumes of bids are continuous in contrast
to combinatorial auctions.

In the paper we focus on bidding languages for continuous auctions. We
introduce the classes of bidding languages for continuous auctions. In Section
2 we introduce basic notions related to combinatorial and continuous auctions.
Then, we describe bidding languages for combinatorial auctions in the next
section. Bidding languages for continuous auctions are introduced in Section 4.
After introducing the new classes of bidding languages we discuss their basic
properties in Section 5. We close the paper with a summary and the directions
of further research.



Bidding languages for auctions of divisible goods 801

2. Auctions

On the grounds of mechanism theory, an auction can be perceived as a mech-
anism. In a mechanism there is a set of agents who participate in a certain
game defined by the mechanism rules. The agents send some signals to the
mechanism. Under certain conditions, the mechanism is triggered to compute
a temporary market equilibrium and find the winners. After that, the results
are sent back by the mechanism to the agents. Each agent obtains information
about commodities allocated to him and related payments, usually in the form
of unit price.

Let C = {1, 2, . . . , C} be a set of commodities being traded. We assume
that for a given payment pj and allocation xj = (x1, . . . , xC)j , the agent j is
able to specify his willingness: accept or not the allocation xj with payment pj .
Agent j-th preferences w(pj) for a given payment pj is a set of all allocations
that agent j is willing to accept. Preference is monotone with respect to price
if w(pj) ∈ w(p′j) for every p′j > pj or w(p′j) ∈ w(pj) for every p′j > pj . Fig. 1
illustrates monotone and non-monotone preferences.

The preferences are not convenient for further computations. We assume,
that preferences are rational and hence they can be represented by some utility
functions.

Instead of the preferences or their utility representations, the agents need
to present their valuations to the mechanism. The valuations may differ from
the preferences. One reason for this is that the agents play a game and act
strategically, thus they do not want to reveal their private preferences. Another
reason is that the agents may even not know their preferences accurately or
preference representation in the form of valuations can be inaccurate.

The valuations may be expressed by the utility function v(x), where x =
(x1, . . . , xC) is a vector of commodity quantities and v(x) is a marginal unit
price. We implicitly assume here that the bidder’s valuation depends only on
the set of goods he wins. It is known as "no externalities" assumption.

The utility function expresses the willingness to accept a vector of commodity
quantities x if price is v(x) or better. The following proposition can be proved.

Proposition 1 Valuations defined by v(x) may express only monotone prefer-
ences.

In the rest of the paper we assume that each agent has its own utility function
and the valuations are expressed by the utility functions.

The agents present their valuations to the mechanism via bids∗. An agent
uses a given language to show his valuation to the market via his bid. A bid
encodes a valuation v that a given agent has. In general, it may be different
from his utility function.

∗Although there are some subtle semantic differences in the following notions: commodities

and goods, bids and offers, we treat them as synonymous in the paper



802 M. Kaleta

j

j

j

j

Figure 1. Monotone (a) and non-monotone (b) preferences



Bidding languages for auctions of divisible goods 803

preference
utility representation

of the preference
valuation utility function bid

bidding language

true agent information information arising from agent’s strategic behaviour

Figure 2. A sequence of transitions from preference to a bid; in the last transition
marked with the dotted ellipse, a bidding language is used

Fig. 2 presents the main notions introduced and relations between them.
Some inaccuracy may happen with each transition in a sequence shown in the
figure. In the paper we focus on the last transition in which a valuation in the
form of utility function, that an agent wants to present to the mechanism, is
transformed into a bid using a given bidding language.

Computation of temporary market equilibrium requires determining the vol-
umes of winning bids and payments. Usually, it is done in two stages. First, the
volumes of winning bids, and next, the market prices and related cash flows,
are calculated. The problem of finding the winning bids is called the Winner
Determination Problem (WDP) (for Network Winner Determination Problem
in case of continuous and combinatorial auctions see Kaleta, 2012).

In combinatorial auctions the agents may submit the bids on combinations
of commodities. Assume, that C = {1, 2, . . . , C} is a set of commodities be-
ing traded. We also assume the following form of the valuation functions in
combinatorial auctions: v : 2C → R. Later in this paper we assume that v is
normalized, which means that v({}) = 0, and v is monotonic. Monotonicity
means that if X ⊆ Y then v(X) ≤ v(Y ). We also assume the free disposal
property which means that there is no cost of excess allocation. The Winner
Determination Problem is defined as follows.

Definition 1 (Winner Determination Problem, WDP) The seller has a set of
commodities, C = {1, 2, . . . , C}, to sell. The buyers submit set of offers (bids)
m ∈ B = {1, 2, . . . , B}. An offer m encodes valuation vm. An allocation of
commodities is denoted by Xm(S) ∈ {0, 1}, where Xm(S) is equal to one if
bundle S ⊆ C is allocated to the bid m. The Winner Determination Problem
(WDP) is to find an allocation of commodities to buying offers which is revenue-
maximizing under the constraints that no commodity is allocated more than once.

In the above, classical formulation of the WDP, it is assumed that each com-
modity can be allocated to at most one buying offer (Lehmann at al., 2006).

In continuous version of WDP, each bid can be accepted partially, and com-
modities are perfectly divisible. The seller has volume pmax

c of commodity c,
c ∈ C. A valuation function in continuous case is a function vm : RC → R. It is
defined over an allocations space, where an allocation is a vector of commodity



804 M. Kaleta

levels, (X)m ∈ R
C , c ∈ C, where (Xc)m is a volume of commodity c allocated to

the offer m. We assume normalization and monotonicity of a valuation function.
A valuation is normalized if v([0, . . . , 0]) = 0. A valuation is monotonic if for
two allocation vectors X = (x) and Y = (y) if xc ≤ yc ∀c then v(X) ≤ v(Y ).
The following continuous WDP is to be solved in a continuous auction case.

Definition 2 (Continuous Winner Determination Problem, cWDP) The seller
has a set of given volumes of commodities, pmax

c , c ∈ C, to sell, where C =
{1, 2, . . . , C} is a a set of commodities, and pmax

c is a volume of commodity
c. The buyers submit set of offers (bids) m ∈ B = {1, 2, . . . , B}. Maximum
volumes are explicitly given in the buying offers. An offer m encodes valuation
vm. An allocation is a vector of commodity levels denoted by (Xc)m ∈ R

C , c ∈
C, Xc ∈ R, where (Xc)m is the level of commodity c allocated to offer m. The
Continuous Winner Determination Problem (cWDP) is to find an allocation of
commodities to buying offers which is revenue-maximizing under the constraints
that no maximal volume in the offers nor pmax

c are exceeded.

In Definitions 1 and 2 there is nothing on how the valuation is encoded in
a bid. Offer encoding is a task of a bidding language. Without specifying a
bidding language the description of the market mechanism is not full and the
market cannot be run.

3. Bidding languages for combinatorial auctions

An atomic bid is a tuple 〈G, p〉, G ⊆ C, where G is a bundle of goods, and p ∈ R
+

is a bid price. The atomic bid represents the following valuation:

v(X) =

{

p if X ⊆ G
0 otherwise

. (1)

Further, we will identify a bid with the associated valuation.
The simplest way to express an agent’s valuation is to assign a value to each

combination of the commodities and submit to the mechanism a set of atomic
bids. Obviously, every valuation can be expressed in that way, but it may
require exponential number of atomic bids. It is not simple for an agent since
it does not reflect and exploit the structure of the valuation. In combinatorial
auctions a bidding language is used to represent valuations over the bundles of
goods more compactly and somehow with respect to structure of the valuation.
A language gives a semantic meaning to the well-formed syntactic elements.

Two notions – complementarity and substitutability – are related to the struc-
ture of the valuation. Two goods, a and b, are complementary if the valuation of
both of them together is equal or greater than the sum of valuations of individual
goods:

v({a}) + v({b}) ≤ v({a, b}). (2)



Bidding languages for auctions of divisible goods 805

Example 1 The following valuation function features complementarity

x v(x)
{a} 2
{b} 3

{a,b} 6

Complementarity is perfect if v({a}) + v({b}) = 0, that is, both goods are
needed to create any value.

Two goods are perfectly substitutable if the valuation of both of them is
equal to sum of valuations of individual goods:

v({a}) + v({b}) = v({a, b}). (3)

Example 2 The following valuation is a case of perfect substitutability

x v(x)
{a} 2
{b} 3

{a,b} 5

Imperfect substitution (substitution in short) is defined by the following relation:

v({a}) + v({b}) > v({a, b}). (4)

Example 3 The following valuation function features (imperfect) substitutabil-
ity

x v(x)
{a} 2
{b} 3

{a,b} 4

Notice that the free disposal assumption means that v(a) + v(b) ≥ v(a) and
v(a) + v(b) ≥ v(b).

Three families of bidding languages for combinatorial auctions are considered
in the literature (Boutilier and Hoos, 2001). The first family, denoted LG,
assumes that price and logical formula of commodities are provided in a bid.
For a given allocation the formula can be evaluated as true or false. If it is
evaluated as true, then the bid is accepted and paid at least the price given in
the bid. Some level of conciseness is achieved because the logical expressions can
be used instead of enumeration of all desired combinations of goods. If desired
valuation for each combination is the same, then the expression can be used to
build one bid. Thus, LG allows to express some agent preferences in a natural
way. In the case of perfect substitutability it exploits the logical structure of the
preferences and leads to quite concise bid. An exemplary language from the LG

family is proposed in Hoos and Boutilier (2000). The authors have introduced



806 M. Kaleta

the L
pos
G language and its variants. L

pos
G assumes that no negation can be used

in the formulas. It allows to express some typical valuations in a natural way.
In an example formulated in Hoos and Boutilier (2000), an agent desires either
a1 or b1, and a2 or b2, and a3 or b3. The case is captured in a straightforward
way as follows: 〈(a1 ∨ b1) ∧ (a2 ∨ b2) ∧ (a3 ∨ b3), p〉, where p is a price for any
of the three feasible bundles. However, LG does not cover value increase for
adding more commodities to a bid with already satisfied logical formula. Thus,
the perfectly complementary goods a and b are captured by the following bid:
〈a∧ b, p〉. But general (imperfect) complementarity and substitutability cannot
be captured with this language. Notice that even perfect substitutability cannot
be expressed with the following bid 〈a∨b, p〉, since if a and b are allocated to the
bid, then the payment is 4 instead of 8 or more (see equation (2)). Extending
the L

pos
G with so called dummy goods increases its expressiveness (Fujishima

et al., 1999), but it becomes more verbose and closer to full enumeration of all
combinations. Another disadvantage of LG is revealed when some combinations
of goods have different valuations. Assume that value of obtaining a and b is
4, and value of a and c is 5. In this case individual bids must be prepared:
〈a ∧ b, 4〉, 〈a ∧ c, 5〉.

In the second family of bidding languages, LB , the logical formulas of atomic
bids are provided. Any language from family LB combines the atomic bids in
a logical formula and assigns a price. But in contrast to LG, not the whole
formula is evaluated as true or false, but just individual atomic bids are checked
to be satisfied or not. The price to be paid is a result of some function of atomic
bid prices with respect to the logical formula of the bids.

Lor
B language is an example from the LB family. In Lor

B language the logical
operator OR is used to bind the atomic bids. If two bids with valuations v1 and
v2 are combined with OR operator, then the resulting valuation is as follows
(Nisan, 2000):

(v1 OR v2)(X) = max
X1,X2⊆X,X1∩X2=∅

(v1(X1) + v2(X2)). (5)

The valuation in the Example 1 can be presented with the following set of bids:
v1 = 〈{a}, 2〉, v2 = 〈{b}, 3〉, v3 = 〈{a, b}, 6〉, and OR bid 〈v1 OR v2 OR v3〉. If
both commodities are allocated to the OR bid, then the maximum defined in
(5) is obtained when v3 is satisfied and is equal to 6. Perfect substitutability can
be directly modeled by joining two atomic bids with OR operator. However,
any imperfect substitutability cannot be expressed in Lor

B since maximization
in (5) would not let choosing a "worse" combination of a ∧ b. Lor

B is not fully
expressive, since it cannot represent any valuation with substitutability.

Another language from LB family, the XOR language Lxor
B , is fully ex-

pressive. XOR combination of two valuations v1 and v2 defines the following
valuation (Nisan, 2000):

(v1 XOR v2)(X) = max{v1(X), v2(X)}. (6)



Bidding languages for auctions of divisible goods 807

The following bids can be formulated in case of Example 1: v1 = 〈{a}, 2〉,
v2 = 〈{b}, 3〉, v3 = 〈{a, b}, 6〉, and XOR bid 〈v1 XOR v2 XOR v3〉. In case
of allocation of {a, b}, the value 6 will be chosen due to maximization in (6).
In Example 3 of imperfect substitution, also three valuations v1 = 〈{a}, 2〉,
v2 = 〈{b}, 3〉, v3 = 〈{a, b}, 4〉 must be submitted. For the allocation {a, b} the
maximal value is obtained when the goods are allocated to v3. Notice that due
to the free disposal assumption, value of v3 will be always greater than of v1
and v2.

Although XOR-bids can represent any valuations, the exponential number
of atomic bids may be needed in case of additive valuations, while in the same
case the OR language requires much less number of atomic bids (Nisan, 2000).
Consider the following valuation with perfect substitutability, that an agent
wants to express:

x v(x)
{a} 4
{b} 4

{a, b} 8

An agent must define the following atomic bids: 〈{a}, 4〉, 〈{b}, 4〉. They are
sufficient to express the valuation in Lor

B language: 〈v1 OR v2〉. But in Lxor
B

language the agent must define atomic bids for every subset of commodities, so
〈{a, b}, 4〉 must be introduced and the final offer should be as follows: 〈v1 XOR
v2 XOR v3〉.

Next three languages in LB family arise from the attempt to combine ad-
vantages of the two previously mentioned languages. In OR-of-XOR language
a bid comprises OR combinations of XOR combinations of atomic bids. On the
contrary, in XOR-of-OR language there are XOR combinations of OR combina-
tions of atomic bids. OR/XOR language is the most general of those, since it
allows for any combination of ORs and XORs. Each of these languages is fully
expressive, but no one dominates in terms of conciseness and simplicity.

Nisan has also proposed a variant of OR language with phantom items –
OR∗ language. An agent is allowed to include in his bids the phantom items
which enable to simulate XOR language. OR∗ is fully expressive and it has also
good properties in terms of conciseness, but it may require quadratic number
of phantom items (Nisan, 2000).

Boutilier and Hoos (2001) proposed another family of bidding languages
denoted by LGB. It allows for logical combination of both goods and bids and
thus it inherits the advantages of both LG and LB families.

4. Bidding languages for continuous auctions

Bidding languages for combinatorial auctions are well established in the litera-
ture. Thus, it is natural to derive the languages for continuous auctions from



808 M. Kaleta

combinatorial ones. We will formulate languages for continuous auctions in
relation to the languages defined in the previous section.

A valuation function for a continuous auction is a function v : RC → R. It is
defined over the allocations space, where an allocation is a vector of commodity
levels, X = (Xc) ∈ R

C , c ∈ C, Xc ∈ R.

In combinatorial auction a bidding language can be used to present one’s
valuation in an approximate (strategic) or accurate way. In the continuous case
the accurate representation of the valuations would make the Winner Determi-
nation Problem too complex for efficient computation. In the rest of the paper
we assume that the utility function, and so the valuations, are the Lipschitz
functions.

We will focus only on bidding languages superfamily under the assumption
that the valuations can be approximated by piecewise linear functions. As in
combinatorial case in which one may enumerate all combinations and thus may
present his utility accurately, also in continuous case an agent may achieve
required error level of approximation with sufficiently large number of linear
pieces. If the number of pieces goes to infinity, then the approximation error
converges to zero.

Definition 3 A bidding language is asymptotically fully expressive if the error
of approximation tends to 0 when the number of offers used to represent the
utility function goes to infinity.

Asymptotically fully expressive bidding language can express any utility
function using infinite (or less) number of offers.

Computational complexity of a given language is a complexity related to
determining the valuation of a bid in the language for a given allocation. The
complexity of bidding language is important, because to make a decision about
the allocation in the Winner Determination Problem, the value of the bids must
be computed.

Definition 4 (Nisan, 2000) A bidding language is polynomially interpretable
if there exists a polynomial time algorithm that for any bid in the language and
given allocation X it computes the value v(X).

With a polynomially interpretable bidding language there is a hope to achieve
efficient algorithm for the WDP. However, in the field of combinatorial auctions
the polynomially interpretable languages are not expressive enough and instead
that, it is desired that having a proof (argument of the valuation function) it is
possible to verify its optimality in polynomial time (Nisan, 2000).

Now, we will reformulate the notions of complementarity and substitutability
for the continuous auction case. The underlying ideas remain unchanged, only
formal definitions need to be rewritten. Let xi = [0, . . . , 0, xi, 0, . . . , 0] denote a
vector of commodities in which only i-th element is not equal to 0 and is equal



Bidding languages for auctions of divisible goods 809

to xi. Then complementarity is defined by the following condition:

v(xa) + v(xb) ≤ v(xa + xb). (7)

Complementarity is perfect if v(xa) = v(xb) = 0.
Substitutability is defined as follows:

v(xa) + v(xb) ≥ v(xa + xb) (8)

and in case of perfect substitution ≥ is replaced with equality.
Offers on combinatorial auctions can be accepted or rejected. In case of

continuous auctions the offers are accepted at a certain level. Let us consider
an agent that would like to obtain the bundle of two units of a and three units
of b and is going to pay 6 monetary units for that bundle. Assuming that the
mechanism allocates to him one item a and one item b, what is the level of
acceptance? Obviously, the demand of this agent is not fully covered. Half of
demand for a is covered, but only 1

3 of demand for b is satisfied. Thus, only 1
3

of the whole bundle is covered and the payment should be 1
3 ∗ 6 = 2. We can

say that the accepted volume of the bundle is 1
3 , and 6 is the unit price of the

so called normalized volume of the bundle.

Definition 5 (Normalizing function) Assume that an agent specifies the bun-
dle of commodities that he would like to obtain, y ∈ R

C , where yc is desired
volume of commodity c. Let p be a price for the bundle y given by the agent.
Normalizing function of a given bid is a function f : RC → R, that for a given
commodity allocation gives the level of bid acceptance and satisfies the following
conditions

f(0) = 0 (9)

f(y) = p (10)

f(ǫy) = ǫp, ∀ǫ ∈ R
+. (11)

Normalization is an immanent part of a bid which must be provided explicitly
or implicitly. For instance, in a bid for a single item c, the normalizing function
is obvious: f(x) = xc, and price in the offer is price for a unit of c. If normalizing
function is not obvious, then it must be provided by an agent in a bid.

4.1. Family of good-based languages

Analogously to the family LG we introduce LCG, a family of languages for
continuous auctions. Instead of logical formulas on commodities, the domain
D ⊆ R

C of feasible allocations is provided in a bid in any language that belongs
to the family LCG.

Definition 6 An offer in family LCG is a tuple (f, p,D), where



810 M. Kaleta

• f : RC → R is a function to compute the normalized, unit volume,
• p is a price for a unit of normalized volume defined by function f ,
• D ⊆ R

C is domain of feasible commodity allocation to the offer.

Then, the valuation is defined as follows:

v(X = (X1, . . . , XC)) = px̄ (12)

x̄ =

{

maxx∈D,0≤xc≤Xc∀c:Xc≥0,Xc≤xc≤0 ∀c:Xc<0 f(x) if such x exists
0 otherwise

(13)

Various languages in the family LCG differ in the way of defining D in a bid.
Let us introduce a language L

simplex
CG from the family LCG with restriction that

D is defined by a simplex and f(x) is linear. In L
simplex
CG a definition of f(x) can

be replaced with a vector α = (α1, . . . , αC) ∈ R
C of commodity shares. Then,

the normalization function is defined as f(x = (x1, . . . , xC)) =
∑

c αcxc.

L
simplex
CG is polynomially interpretable since the valuation can be formulated

as a linear programme:

max
x

p
∑

c∈C

αcxc (14)

subject to

xc ≤ αcXc (15)

xc ≥ 0 (16)

xc ∈ D (17)

where D is a simplex.
L

simplex
CG allows to express substitutability. Assume that c1 and c2 are per-

fectly substitutable. An agent needs one unit of these goods and is willing to pay
p. He can formulate the following offer: 〈α = (1, 1), p,D = {x : xc1 + xc2 ≤ 1}〉.
The normalizing function is f(x) = xc1 + xc2 . The value of an allocation is

defined by p(xc1 +xc2). It is easy to see that like L
pos
G , Lsimplex

CG is not sufficient
to express imperfect substitutability.

Let us consider the following example: an agent would like to receive either
c1 or c2 with total maximal volume equal to 4. For each unit of c1 he is willing
to pay 10, and for each unit of c2 he is willing to pay 11. Notice, that this
case cannot be represented in language LCG. But it can be represented in
extended one, Lsimplex∗

CG . Let Lsimplex∗
CG be the language Lsimplex

CG with additional
dummy commodities. These commodities are binary which means that each
commodity can be accepted fully or not at all. Then, they can be used to
model disjunctions like in the language LOR∗

G (Nisan, 2000). In the above case,
an agent must introduce dummy commodity c3. Then the offers may look like



Bidding languages for auctions of divisible goods 811

these: 〈((1, 0, 1), 10, {x : xc3 ≥ xc1/M})〉, 〈((0, 1, 1), 1, {x : xc3 ≥ xc2/M})〉,
where M is a number big enough.

As in L
pos
G , perfect complementarity can be modeled in L

simplex
CG , but im-

perfect complementarity not. If c1 and c2 are perfectly complementary, then α
should be (1, 0) or (0, 1) and D should be defined by equation xc1 = xc2 .

L
simplex
CG is not fully expressive, but in case of perfect substitutability or

complementarity it can be a convenient tool.

4.2. Family of bid-based languages

Now, we will introduce the family LCB of languages which, similarly to LB , is
based on functions of atomic bids. There are two types of atomic bids: simple
and bundle offers.

Definition 7 (Simple offer in a continuous auction) A simple offer for a com-
modity c ∈ C is a pair (p,Dc), where p is an offer price, Dc ⊆ R is feasible
domain, that is, if the offer is winning, then the allocation Xc to this offer must
satisfy the condition Xc ∈ Dc.

The valuation of simple offer is defined as follows:

v(X = (0, . . . , Xc, . . . , 0)) =

{

pXc if Xc ∈ Dc

0 otherwise
. (18)

Definition 8 (Bundle offer in a continuous auction) A bundle offer is a tuple
(α, p,D), where

• α = (α1, . . . , αC) is a vector of commodity shares, αc ∈ R is the share of
commodity c in the bundle,

• p is an offer price of whole bundle,
• D ⊆ R

C is feasible domain of commodities allocated to this offer.

The valuation of the bundle offer is defined as follows:

v(X = (X1, . . . , XC)) = px̄ (19)

where x̄ is an accepted volume of the bundle α:

x̄ =

{

argmaxx∈D,0≤xc≤Xc
minc{

xc

αc

} if there exists such x

0 otherwise
. (20)

Simple offer is a special case of the bundle offer, but sometimes it is conve-
nient to refer to the simple offers, especially if they are the only type of atomic
bids that is allowed on a given auction. Notice that in contrast to the combi-
natorial auctions, where limiting the atomic bids would make no sense, it could
be quite natural in the simple version of continuous auction.



812 M. Kaleta

In Lor
CB language several atomic bids can be combined with the operator

OR. A combination of two bids, b1 and b2, defines the following valuation:

(v1 OR v2)(X) = max
(x)1,(x)2

(v1((x)1) + v2((x)2)) (21)

subject to constraints

(x)1 + (x)2 ≤ X, (xi)1, (xi)2 ≥ 0 (22)

where (x)1, (x)2 ∈ R
C and (xi)n is i-th element of vector (x)n.

Consider Example 1 assuming that fractional allocations are allowed. Then,
complementarity can be addressed in a similar way as in combinatorial case.
An agent needs to define two simple offers and one bundle offer with shares
α = (1, 1). Then, the offers must be combined with the OR operator. Perfect
substitutability can be addressed directly by combining two simple offers with
OR. Lor

CB does not allow to model an imperfect substitutability, since two simple
bids will be treated separately instead of the "worse" bundle.

In Lxor
CB language two (or more) atomic bids can be combined with the op-

erator XOR, which defines the following valuation:

(v1 XOR v2)(X) = max
(x)1,(x)2

{v1((x)1), v2((x)2)} (23)

subject to constraints

(x)1 + (x)2 ≤ X, (xi)1, (xi)2 ≥ 0. (24)

Both Examples 1 and 3 can be modeled in the same way like in combinatorial
case – by combining with XOR two simple offers and one bundle bid.

Analogously to the other languages defined in Section 4, the languages

L
or−of−xor
CB , L

xor−of−or
CB and L

or/xor
CB can be also defined. Introduction of a

language equivalent to OR∗ requires that the dummy commodities be binary –
they can be accepted with volume 1 or not accepted and this integrality must
be taken into account in equation (22).

4.3. Family of good- and bid-based languages

The last family of languages is based on the concept of Boutilier and Hoos,
which is a kind of mixture of the previously defined families (Boutilier and
Hoos, 2001). The language LCGB is defined as follows:

• bundle offer is in LCGB,
• if b1, b2 ∈ LCGB then (b1 ∧ b2, p), (b1 ∨ b2, p), (b1 ⊕ b2, p) are all in LCGB.

Let Φ(b) be the formula associated with a bid b, taking one of the following
shapes: b, (b1∧b2), (b1∨b2), (b1⊕b2). The function σ(Φ(b), X) gives the volume
allocated to the bid b with formula Φ, when the allocation computed by WDP
is X .



Bidding languages for auctions of divisible goods 813

• If Φ(b) is a bundle offer, then σ(Φ(b), X) = x̄, x̄ is defined as in (13);
• If Φ(b) = b1 ∨ b2 or Φ(b) = b1 ⊕ b2, then σ(Φ(b), X) = max(σ(Φ(b1), X),
σ(Φ(b2), X));

• If Φ(b) = b1 ∧ b2, then σ(Φ(b), X) = min(σ(Φ(b1), X), σ(Φ(b2), X)).

The valuation is defined as follows:

• If the bid is a bundle offer, then the valuation is equal to the one of bundle
offer;

• If Φ(b) = b1 ∨ b2 then the valuation is the sum of valuations for Φ(b1) and
Φ(b2) and pσ(Φ(b1) ∨ Φ(b2), X);

• If Φ(b) = b1 ∧ b2 then the valuation is the sum of valuations for Φ(b1) and
Φ(b2) and pσ(Φ(b1) ∧ Φ(b2), X);

• If Φ(b) = b1 ⊕ b2 then the valuation is the sum of maximum of valuations
for Φ(b1) and Φ(b2) and pσ(Φ(b1) ∨ Φ(b2), X).

Notice that in contrast to LCB there are no constraints like (22) or (24). So,
if the allocation is satisfying many formulas, then each formula is taken in the
valuation. More justifications for the definition of the language can be derived
from its combinatorial version presented in Boutilier and Hoos (2001).

Let us consider Example 1 under the assumption that fractional allocation
is feasible. Two bundle offers should be stated: v1 = 〈(1, 0), 2, D = {x : x1 ≤
1, x2 = 0}〉 and v2 = 〈(0, 1), 3, D = {x : x1 = 0, x1 ≤ 1}〉. Then the offer
〈v1 ∧ v2, 1〉 represents the correct valuation. Assume that the allocation is X =
(0.5, 1). Then, σ(v1, X,X) = 0.5, σ(v1) = 1, and σ(v1 ∧ v2, X) = min{0.5, 1} =
0.5. The valuation is the sum of valuations of v1 and v2 and pσ(v1∧v2, X), that
is 0.5*2+1*3+0.5*1=4.5. The value can be calculated in a different way. Both
commodities are worth 6 for a unit of the bundle, but only 0.5 unit of both of
them are available. The rest volume of c2, which is 0.5, is worth 3 for a unit.
Then, in fact, the value is 6*0.5+0.5*3=4.5. Notice that in this language the
intrinsic values are visible in simple offers, and in complex offers an increase of
the value due to commodity combination is clearly visible.

5. Language properties

Languages Lsimplex
CG and Lor

CB are not asymptotically fully expressive. In previ-
ous sections we have presented valuations that cannot be represented in these
languages. Languages L

simplex∗
CG , LXOR

CB , LCGB are asymptotically fully ex-
pressive, since they can model exclusive disjunction†. In that case, a space of
allocations can be divided into any number of intervals. For each interval an
atomic bid can be defined and each combination of atomic bids can be combined
with XORs (in L

simplex
CG XOR is modeled by dummy good and single commodity

in a logical expression corresponds to an atomic bid). Also other languages in
LCB which have XOR possibilities are asymptotically fully expressive.

†Notice that the free disposal assumption is crucial for asymptotically full expressiveness.

Without free disposal assumption only L
simplex
CG

is asymptotically fully expressive.



814 M. Kaleta

Let us define the size of a bid as a number of atomic formulas (e.g. atomic
bids, bundle bids, elements of logical expression) contained in the bid. We
consider a language to be better than other if it can express any valuation more
compactly. This means that it needs less bids with smaller sizes. Exploiting the
property of asymptotically full expressiveness may involve exponential number
of bids or formulas in a bid. There is no proven dominating language in the
meaning of succinctness.

Another aspect is the computational complexity of a language. L
simplex
CG is

proven to be polynomially interpretable. The open question is if there is a sharp
edge between asymptotically full expressiveness and polynomial complexity.

Perhaps the most important feature of a bidding language is the complexity
for the bidding agent. The languages, that enable to model the utility in a
natural and simple way, are preferred. Again, there is no language which could
be acknowledged as the best according to this criterion. L

simplex
CG and Lor

CB

naturally cover a case of additive valuations of goods. However, LCGB appears
to be the most intuitive in some non-additive valuations. Let us consider two
following examples.

Example 4 Suppose that an agent needs two complementary goods c1 and c2
with a joint value 10. The valuations for individual commodities are 1 and 2
for commodity c1 and c2, respectively. The maximal requested volume is 4. The
required valuation is 10 ∗min{x1, x2}+ x1 + 2x2, assuming that x1, x2 ≤ 4.

In L
simplex
CG the above valuation can be represented by the following bids:

(f(x1, x2) = x1, 10,D = {(x1, x2) : x1 = x2, 0 ≤ x1, x2 ≤ 4) (25)

(f(x1, x2) = x1, 1,D = {(x1, x2) : 0 ≤ x1 ≤ 4) (26)

(f(x1, x2) = x2, 2,D = {(x1, x2) : 0 ≤ x2 ≤ 4). (27)

If a mechanism is preferring the most expensive bids, then these bids would
represent the utility correctly. But, if a mechanism will choose the cheapest at
first, then any of the bids for single commodities can be accepted instead of the
first offer.

In LCB language the utility can be defined as a set of atomic bids: (13,D =
{(x1, x2) : x1 = x2, 0 ≤ x1, x2 ≤ 4)}), (1,D = {(x1, x2) : 0 ≤ x1 ≤ 4)}),
(2,D = {(x1, x2) : 0 ≤ x1 ≤ 4)}), which are combined with operator OR. Then,
the task to maximize the value for the bidder is not within the mechanism, but
is satisfied by definition (22).

In LCGB the utility can be represented in an intuitive way, reflecting the
structure of the utility function: 〈((1, 0), 1,D = {(x1, x2) : 0 ≤ x1 ≤ 4)}) ∧
((0, 1), 2,D = {(x1, x2) : 0 ≤ x2 ≤ 4)}), 10〉. Notice that the numbers appearing
in the definition of the valuation, are directly included in the bid. Price 10 of
the complex bid is interpreted as a basic value of possessing any of commodity,
and prices in atomic bids play a role of additional profit for choosing particular
commodity.



Bidding languages for auctions of divisible goods 815

Example 5 Suppose that an agent needs two substitutable goods c1 and c2.
Each of them provides the basic valuation 10, but also each of them provides
some additional bonus: 1, 2 in case of commodity c1 and c2 respectively. The
maximal requested volume is 4. The required valuation is 10∗(x1+x2)+x1+2x2,
assuming that x1 + x2 ≤ 4.

In LCG the most natural way is to use OR operator, e.g.: 〈(c1, 11) OR (c2, 12)〉.
In LCB , again, it is impossible to model this utility. LCGB seems to be the most
intuitive since, as in previous example, it directly reflects the structure of the
utility function: 〈((1, 0), 1,D = {(x1, x2) : 0 ≤ x1 ≤ 4)}) ∨ ((0, 1), 2,D =
{(x1, x2) : 0 ≤ x2 ≤ 4)}), 10〉.

6. Summary

We have introduced three families of bidding languages for continuous auctions.
They are based on the concepts derived from the well-defined combinatorial auc-
tions. We have generalized the language families based on goods, bids, and on
both of them to the continuous case. We have also generalized several notions,
which create a solid ground for bidding languages in a continuous case. Some
of the properties known from their equivalents in combinatorial auctions are
preserved in the proposed languages. Most of introduced languages are asymp-
totically fully expressive, but they differ in succinctness and logical grounds from
the agent point of view. No language is dominating in terms of these criteria.

Further work should include deeper analysis of the languages in the con-
text of their expressiveness and succinctness for particular classes of valuation
functions.

Acknowledgments

The research was supported by the Polish National Budget Funds 2010-2013 for
science under the grant N N514 044438.

References

Benyoucef, M. and Pringadi, R. (2006) A BPEL Based Implementation
of Online Auctions. Lecture Notes in Computer Science 4652, Springer.

Boutilier, C. and Hoos, H.H. (2001) Bidding languages for combinatorial
auctions. Proc. 17th Intl. Joint Conference on Artificial Intelligence.
AAAI Press, 1211—1217.

Fujishima, Y., Leyton-Brown, K. and Shoham, Y. (1999) Taming the
computational complexity of combinatorial auctions: Optimal and ap-
proximate approaches. Proc. 16th International Joint Conferences on
Artificial Intelligence. Morgan Kaufmann Publishers Inc., 548—553.



816 M. Kaleta

Hoos, H.H. and Boutilier, C. (2000) Solving Combinatorial Auctions us-
ing Stochastic Local Search. Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence. AAAI Press, 22–29.

Kaleta, M. (2012) Security constrained network winner determination prob-
lem. Automatyzacja Procesów Dyskretnych, Teoria i zastosowania. Sile-
sian University of Technology.

Kaleta, M. and Traczyk, T. (eds.) (2012) Modeling Multi-commodity Tra-
de: Information Exchange Methods. Advances in Intelligent and Soft
Computing 121. Springer.

Lehmann, D., Müller, R. and Sandholm, T. (2006) The winner determi-
nation problem. Chap. 12 in: P. Cramton, Y. Shoham and R. Steinberg,
eds., Combinatorial Auctions. MIT Press.

Nisan, N. (2000) Bidding and allocation in combinatorial auctions. Proceed-
ings of ACM Conference on Electronic Commerce. ACM Press New York,
1–12.

Rolli, D. and Eberhart, A. (2005) An Auction Reference Model for De-
scribing and Running Auctions. Proc. of the Wirtschaftsinformatik. Phys-
ica –Verlag HD, 289—308.


