Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, three kinds of pier arrangements were tested. They are (i) two piers in tandem, (ii) two piers in staggered arrangement, and (iii) three piers in symmetrically staggered arrangements. In the arrangement of two piers in tandem, the equilibrium scour depth at downstream pier decreases with an increase in downstream distance up to approximately eight times pier diameter and then increases with further increase in downstream distance. However, the scour depth at downstream pier is always smaller than that at upstream pier. In the arrangement of two staggered piers, the scour depth at the downstream pier for L/b = 4, where L is the offset distance and b is the pier diameter, is the same as that of the upstream pier at S = 8b, where S is the streamwise spacing or distance between piers. Further, for three piers in staggered arrangement, as the lateral spacing between downstream piers increases, the equilibrium scour depth at downstream pier decreases.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
29--46
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
autor
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
autor
- Dipartimento di Ingegneria Civile, Università della Calabria, RendeItaly
autor
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
Bibliografia
- 1. Beg M, Beg S (2015) Scour hole characteristics of two unequal size bridge piers in tandem arrangement. ISH J Hydraul Eng 21(1):85–96. doi:10.1080/09715010.2014.963176
- 2. Breusers HNC, Nicollet G, Shen HW (1977) Local scour around cylindrical piers. J Hydraul Res 15(3):211–252. doi:10.1080/00221687709499645
- 3. Cardoso AH, Bettess R (1999) Effects of time and channel geometry on scour at bridge abutments. J Hydraul Eng 125(4):388–399. doi:10.1061/(ASCE)0733-9429(1999)125:4(388)
- 4. Chabert J, Engeldinger P (1956) Etude des affouillements autour des piles de ponts. Serie A, Laboratoire National d’Hydraulique, Chatou (in French)
- 5. Chang W, Lai J, Yen C (2004) Evolution of scour depth at circular bridge piers. J Hydraul Eng 130(9):905–913. doi:10.1061/(ASCE)0733-9429(2004)130:9(905)
- 6. Chiew YM, Melville BW (1987) Local scour around bridge piers. J Hydraul Res 25(1):15–26. doi:10.1080/00221688709499285
- 7. Dey S (1991) Clear water scour around circular bridge piers: a model. Ph.D. thesis, Department of Civil Engineering, Indian Institute of Technology, Kharagpur
- 8. Dey S (1999) Time variation of scour in the vicinity of circular piers. Proc Inst Civil Eng Water Mar Eng 136(2):67–75
- 9. Dey S, Raikar RV (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413. doi:10.1061/(ASCE)0733-9429(2007)133:4(399)
- 10. Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876. doi:10.1061/(ASCE)0733-9429(1995)121:12(869)
- 11. Elliott KR, Baker CJ (1985) Effect of pier spacing on scour around bridge piers. J Hydraul Eng 111(7):1105–1109. doi:10.1061/(ASCE)0733-9429(1985)111:7(1105)
- 12. Ettema R (1980) Scour at bridge piers. Ph.D. thesis, Department of Civil Engineering, University of Auckland, Auckland
- 13. Ferraro D, Tafarojnoruz A, Gaudio R, Cardoso AH (2013) Effects of pile cap thickness on the maximum scour depth at a complex pier. J Hydraul Eng 139(5):482–491. doi:10.1061/(ASCE)HY.1943-7900.0000704
- 14. Hannah CR (1978) Scour at pile groups. In: Research report no. 28-3, Civil Engineering Department, University of Canterbury, Christchurch
- 15. Kothyari UC, Kumar A (2012) Temporal variation of scour around circular compound piers. J Hydraul Eng 138(11):945–957. doi:10.1061/(ASCE)HY.1943-7900.0000593
- 16. Kothyari UC, Ranga Raju KG, Garde RJ (1992) Live-bed scour around cylindrical bridge piers. J Hydraul Res 30(5):701–715. doi:10.1080/00221689209498889
- 17. Kumar A, Kothyari UC, Ranga Raju KG (2003) Scour around compound bridge piers. In: Proceedings of the 30th IAHR congress, Thessaloniki, pp 309–316
- 18. Lauchlan CS, Melville BW (2001) Riprap protection at bridge piers. J Hydraul Eng 127(5):412–418. doi:10.1061/(ASCE)0733-9429(2001)127:5(412)
- 19. Laursen EM, Toch A (1956) Scour around bridge piers and abutments. In: HR-30 and Iowa highway research board bulletin, vol 4
- 20. Lu JY, Shi ZZ, Hong JH, Lee JJ, Raikar RV (2011) Temporal variation of scour depth at nonuniform cylindrical piers. J Hydraul Eng 137(1):45–56. doi:10.1061/(ASCE)HY.1943-7900.0000272
- 21. Melville BW (1997) Pier and abutment scour: integrated approach. J Hydraul Eng 123(2):125–136. doi:10.1061/(ASCE)0733-9429(1997)123:2(125)
- 22. Melville BW, Chiew YM (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125(1):59–65. doi:10.1061/(ASCE)0733-9429(1999)125:1(59)CrossRefGoogle Scholar
- 23. Melville BW, Coleman SE (2000) Bridge scour. Water Resources Publications, LLC, Highlands Ranch
- 24. Melville BW, Raudkivi AJ (1996) Effects of foundation geometry on bridge pier scour. J Hydraul Eng 122(4):203–209. doi:10.1061/(ASCE)0733-9429(1996)122:4(203)
- 25. Mia MF, Nago H (2003) Design method of time dependent local scour at circular bridge pier. J Hydraul Eng 129(6):420–427. doi:10.1061/:(ASCE)0733-9429(2003)129:6(420)
- 26. Monti R (1994) Indagine sperimentale delle caratteristiche fluidodinamiche del campo di moto intorno aduna pila circolare. Ph.D. thesis, Politecnico di Milano, Milan (in Italian)
- 27. Moreno M, Maia R, Couto L (2015) Effects of relative column width and pile-cap elevation on local scour depth around complex piers. J Hydraul Eng 142(2):04015051. doi:10.1061/(ASCE)HY.1943-7900.0001080
- 28. Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128(9):811–820. doi:10.1061/(ASCE)0733-9429(2002)128:9(811)
- 29. Oliveto G, Hager WH (2005) Further results to time-dependent local scour at bridge elements. J Hydraul Eng 131(2):97–105. doi:10.1061/(ASCE)0733-9429(2005)131:2(97)
- 30. Raudkivi AJ (1986) Functional trends of scour at bridge piers. J Hydraul Eng 112(1):1–13. doi:10.1061/(ASCE)0733-9429
- 31. Shen HW, Schneider VR, Karaki SS (1969) Local scour around bridge piers. J Hydraul Div 95(HY6):1919–1940Google Scholar
- 32. Sumer BM, Christiansen N, Fredsøe J (1993) Influence of cross section on wave scour around piles. J Waterway Port Coast Ocean Eng 119(5):477–495. doi:10.1061/(ASCE)0733-950X(1993)119:5(477)
- 33. Tafarojnoruz A, Gaudio R, Grimaldi C, Calomino F (2010) Required conditions to achieve the maximum local scour depth at a circular pier. In: Proceedings of the 32 Convegno Nazionale di Idraulica e Costruzioni Idrauliche, Palermo
- 34. Tafarojnoruz A, Gaudio R, Calomino F (2012) Bridge pier scour mitigation under steady and unsteady flow conditions. Acta Geophys 60(4):1076–1097. doi:10.2478/s11600-012-0040-x
- 35. Wang H, Tang H, Liu Q, Wang Y (2016) Local scouring around twin bridge piers in open-channel flows. J Hydraul Eng 142(2):04015051. doi:10.1061/(ASCE)HY.1943-7900.0001154
- 36. Yanmaz AM (2006) Temporal variation of clear water scour at cylindrical bridge piers. Can J Civ Eng 33(8):1098–1102. doi:10.1139/l06-054
- 37. Yanmaz AM, Altinbilek HDGA (1991) Study of time-dependent local scour around bridge piers. J Hydraul Eng 117(10):1247–1268. doi:10.1061/(ASCE)0733-9429
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31ac180a-4896-47b7-99a2-6cf2705fc752