PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Granulometric analysis to estimate influence of anionic surfactant on activated sludge structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie analizy granulometrycznej do okreoelenia wp£ywu surfaktantu na strukturê osadu czynnego
Języki publikacji
EN
Abstrakty
EN
The work concerns the evaluation of the possibility of using laser diffraction analyzer to determine changes in the distribution of sludge floc size in the presence of anionic surfactant. As a model of surfactant linear alkylbenzene sulphonate (LAS) was used. Different concentrations: 10, 100 and 200 mg/dm3 of LAS was applied. The granulometric analysis showed that the pure activated sludge was composed of particles with a size of 1 m to 2 mm. The largest and fastest changes in the distribution of sludge floc size after the addition of a surfactant at a concentration of 100 mg/dm3 were observed. The flocs with a diameter above 0.8 mm disappear and the average diameter over volume of particles decrease from 0.29 to 0.19 mm. Doubling the dose of surfactant causes the flocs aggregation. The sludge flocs capability for break-up and aggregation is not proportional to the concentration of LAS. Addition of LAS to the sludge results in decrease of the sludge volume index. This study showed that granulometric measurement may help to estimate an impact of chemical substances contained in wastewater on activated sludge.
PL
Praca dotyczy oceny możliwości wykorzystania analizatora dyfrakcji laserowej do określenia zmian w dystrybucji rozmiarów kłaczków osadu czynnego w obecności surfaktantu anionowego. Jako model surfaktantu, zastosowano liniowy alkilobenzenosulfonian sodu (LAS). W przeprowadzonych badaniach użyto różnych stężeń wyjściowych surfaktantu: 10, 100 i 200 mg/dm3. Analiza granulometryczna osadu wykazała, że rozmiar cząstek osadu mieści się w zakresie od 1 m do 2 mm. Największe i najszybsze zmiany w rozkładzie wielkości kłaczków osadu zaobserwowano po dodaniu surfaktantu o stężeniu 100 mg/dm3. Zanikły kłaczki o średnicy powyżej 0,8 mm, a średnia średnica kłaczków zmalała z 0,29 do 0,19 mm. Podwojenie dawki surfaktantu powoduje agregację kłaczków. Stopień rozdrobnienia bądź aglomeracji kłaczków pod wpływem LAS nie jest wprost proporcjonalny do stężenia surfaktantu. Dodatek LAS do osadu czynnego skutkuje spadkiem indeksu wagowo-objętościowego Przeprowadzone badania wykazały, że analiza granulometryczna może być stosowana jako metoda ułatwiająca oszacowanie wpływu związków chemicznych zawartych w ściekach na osad czynny.
Rocznik
Strony
51--61
Opis fizyczny
Bibliogr. 31 poz., wykr., tab.
Twórcy
  • Department of Chemistry and Industrial Commodity Science, Gdynia Maritime University, ul. Morska 83, 81–225 Gdynia, Poland, phone: +48 58 690 16 04, fax: +48 58 620 67 01
  • Department of Sanitary Engineering, Gdansk University of Technology, ul. Narutowicza 11/12, 80–233 Gdańsk, Poland, phone: +48 58 347 15 09, fax: +48 58 347 20 44
autor
  • Wastewater Treatment Plant „Swarzewo”, ul. Władysławowska 84, 84–120 Władysławowo, Poland, phone: +48 58 674 15 69, fax: +48 58 6741508
Bibliografia
  • [1] Eikelboom DH, van Buijsen HJJ. Podręcznik mikroskopowego badania osadu czynnego (Microscopic sludge investigation manual). 1st ed. Szczecin: Sejdel-Przywecki;1999.
  • [2] Liwarska-Bizukojc E, Bizukojc M. Effect of selected anionic surfactants on activated sludge flocs. Enzyme Microb Techn. 2006;39(4):660-668. DOI: 10.1016/j.enzmictec.2005.11.020.
  • [3] Wagner M, Pöpel HJ. Surface active agents and their influence on oxygen transfer. Water Sci Technol. 1996;34(3-4):249-256.
  • [4] Temmink H, Klapwijk B. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plant. Water Res. 2004;38:903-912. DOI: 10.1016/j.watres.2003.10.050.
  • [5] Ziqing O, Ayfer Y, Yaowu H, Liangqing J, Kettrup A, Tieheng S. Adsorption of linear Alkylbenzene Sulfonate (LAS) on soils. Chemosphere 1996;32(5):827-839. DOI: 10.1016/0045-6535(95)00350-9.
  • [6] Cserháti T, Forgács E, Oros G, Biological activity and environmental impact of anionic surfactants. Environ Int. 2002;28:337-348.
  • [7] Liwarska-Bizukojc E, Bizukojc M. Digital image analysis to estimate the influence of sodium dodecyl sulphate on activated sludge flocs. Proc Biochem. 2005;40:2067-2072. DOI: 10.1016/j.procbio.2001.07.020.
  • [8] Shcherbakowa VA, Kestutis S, Akimenko VK. Toxic effect of surfactants and probable products of their biodegradation on methagenesis in aerobic microbial community. Chemosphere 1999;39:1861-1870. DOI: 10.1016/S0045-6535(99)00081-8.
  • [9] Aloui F, Kchaou S, Sayadi S. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability. J Hazard Mater. 2009;164:353-359. DOI: 10.1016/j.jhazmat.2008.08.009.
  • [10] Brandt K, Hesselsře M, Roslev P, Henriksen K, Sřrensen J. Toxic effects of linear alylbenzene sulfonate on metabolic activity, growth rate and microcolony formation of Nitrosomonas and Nitrosospira strains. Appl Environ Microbiol. 2001;67:2489-2498.
  • [11] da Motta M, Pons MN, Roche N, Vivier H. Characterisation of activated sludge by automated image analysis. Biochem Eng J. 2001;9:165-173.
  • [12] Govoreanu R, Saveyn H, Van der Meeren P, Vanrolleghem PA. Simultaneous determiatnion of activated sludge floc size distribution by different techniques. Water Sci Technol. 2004;50(12):39-46.
  • [13] Bieganowski A, Łagód G, Ryżak M, Montusiewicz A, Chomczyńska M, Sochan A. Measurement of acyivated sludge particie diameters using laser diffraction method. Ecol Chem Eng S. 2012;12(4):597-608. DOI: 10.2478/v10216-011-0042-7.
  • [14] Houghton JI, Burgess JE, Stephenson T. 2002 Off-line particle size analysis of digested sludge. Water Res. 2002;36:4643-4647. DOI: 10.1016/S0043-1354(02)00157-4.
  • [15] Vitton SJ, Sadler LY. Particle size analysis of soils using laser light scattering and X- ray absorption technology, ASTM, Geotech Test J. 1997;20:63-73.
  • [16] Wilen B, Jin B, Lant P. Impacts of structural characteristics on activated sludge floc stability. Water Res. 2003;37:3632-3645. DOI: 10.1016/S0043-1354(03)00291-4.
  • [17] Bushell G. Forward light scattering to characterize structure of flocs composed of large particles, Chem Eng J. 2005;11:145-149. DOI: 10.1016/j.cej.2005.02.021.
  • [18] McCave IN, Syvitski PM. Principles and methods of geological particle size analysis. Principles, methods and application of particle size analysis. Cambridge: Cambridge University Press;1991.
  • [19] De Boer G, De Weerd C, Thoenes D, Goossens H. Laser diffraction spectrometry: Fraunhofer versus Mie scattering. Particle and Particle Syst Charact. 1987;4:14-19.
  • [20] Dereszewska A, Cytawa S, Tomczak-Wandzel R, Medrzycka K. The effect of anionic surfactant concentration on activated sludge condition and phosphate release in biological treatment plant. Pol J Environ Stud. (in press) DOI: 10.15244/pjoes/28640.
  • [21] APHA, Standard Methods for the examination of Water and wastewater, 19th ed. Baltimore, MD: American Public Health Association; 1995.
  • [22] Nowak JT, Sadler E, Murthy SN. Mechanism of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res. 2003;37:3136-3144. DOI: 10.1016/S0043-1354(03)00171-4.
  • [23] Jin B,Wilen B, Lant P. A comprehensive insight into floc characteristic and their impact on compressibility and settleability of activated sludge. Chem Eng J. 2003;95:221-234. DOI: 10.1016/S1385-8947(03) 00108-6.
  • [24] Yu GH, He PJ, Shao LM. Characteristic of extracellular polymeric substances (EPS) fractions from excess sludges and their effects on bioflocculability. Biores Tech. 2009;100:3193-3198. DOI: 10.1016/j.biortech.2009.02.009.
  • [25] Li XY, Yang SF. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res. 2007;41:1022-1030. DOI: 10.1016/j.waterres.2006.06.037.
  • [26] Chen Y, Chen YS, Gu G. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering. Chem Eng J. 2004;99:137-143. DOI: 10.1016/j.cej. 2003.08.027.
  • [27] Sheng GP, Yu HQ and Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotech Adv. 2010;28:882-894.DOI: 10.1016/j.biotechadv. 2010.08.0001.
  • [28] Zieliński R. Surfaktanty (Surfactants). Poznań: Wyd Akad Ekonomicznej; 2000.
  • [29] Guellil A, Thomas F, Block JC, Bersillon L, Ginestet P. Transfer of organic matter between wastewater and activated sludge flocs. Water Res. 2001;35(1):143-150. DOI: 10.1016/S0043-1354(00)00240-2.
  • [30] Wagner M, Pöpel HJ. Surface active agents and their influence on oxygen transfer. Water Sci Techn. 1996;34(3-4):249-256.
  • [31] Conrad A, Cadoret A, Corteel P, Leroy P, Block JC. Adsorption/desorption of linear alkylbenzene sulfonate (LAS) and azoproteins by/from activated sludge flocs. Chemosphere 2006;62:53-60. DOI: 10.1016/j.chemosphere. 2005.04.014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31a8ee16-cb75-452a-b481-8c9469a2d2b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.