Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Malfunctions in equipment and components are often sources of reduced productivity and increased maintenance costs in various industrial applications. For this reason, machine condition monitoring is being pursued to recognize incipient faults in the strive towards optimising maintenance and productivity. In this respect, the following lecture notes provide the basic concepts underlying some methodologies of soft computing, namely neural networks, fuzzy logic systems and genetic algorithms, which offer great potential for application to condition monitoring and fault diagnosis for maintenance optimisation. The exposition is purposely kept on a somewhat intuitive basis: the interested reader can refer to the copious literature for further technical details.
Rocznik
Tom
Strony
363--377
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Department of Nuclear Engineering, Polytechnic of Milan, Italy
Bibliografia
- [1] Aven, T. (1996). Condition based replacement policies – a counting process approach. Reliability Engineering and System Safety, Vol. 51, 275-282.
- [2] Barata, J., Guedes Soares, C., Marseguerra, M. & Zio, E. (2001). Monte Carlo simulation of deteriorating systems. Proceedings ESREL 2001, 879-886.
- [3] Barlow, R. E. & Proschan, F. (1965). Mathematical Theory of Reliability. John Wiley, New York.
- [4] Bérenguer, C., Grall, A. & Castanier, B. (2000). Simulation and evaluation of condition-based maintenance policies for multi-component continuous-state deteriorating systems. Foresight and Precaution. Cottam, Harvey, Pape & Tait (eds), Rotterdam, Balkema, 275-282.
- [5] Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.
- [6] Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function, Mathematics of Control, Signals and Systems, Vol.2, 303-314.
- [7] Dybowski, R. & Roberts, S. J. (2000). Confidence and Prediction Intervals for Feed-Forward Neural Networks, in Clinical Applications of Artificial Neural Networks, Eds. R. Dybowski and V. Gant, Cambridge University Press.
- [8] Fonseca, C. M. & Fleming, P. J. (1995). An Overview of Evolutionary Algorithms in Multiobjective Optimisation. Evolutionary Computation, 3(1):1-16, Spring.
- [9] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimisation, and Machine Learning. Addison-Wesley Publishing Company.
- [10] Grall, A., Bérenguer, C. & Chu, C. (1998). Optimal dynamic inspection/replacement planning in condition - based maintenance. Safety and Reliability. S. Lydersen, G. Hansen & H. Sandtorv (eds), Trondheim, Balkema, 381-388.
- [11] Holland, J. H. (1975). Adaptation in natural and artificial system. Ann Arbor, MI: University of Michigan Press.
- [12] Hontelez, J. A. M., Burger, H. H. & Wijnmalen, D. J. D. (1996). Optimum condition-based maintenance policies for deteriorating systems with partial information. Reliability Engineering and System Safety, Vol.51, 267-274.
- [13] Klir, G. J. & Bo, Yuan (1995). Fuzzy Sets and fuzzy logic: Theory and Application. Prentice Hall.
- [14] Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, in C. S. Mellish Ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers.
- [15] Kolmogorov, A. N. (1957). On the Representation of Continuous Functions of Many Variables by Superposition of Continuous Functions of One Variable and Addition. Doklady Akademii Nauk SSR, Vol. 114, 953-956.
- [16] Kopnov, V. A. (1999). Optimal degradation process control by two-level policies. Reliability Engineering and System Safety. Vol. 66, 1-11.
- [17] Lam, C. & Yeh, R. (1994). Optimal maintenance policies for deteriorating systems under various maintenance strategies. IEEE Transactions on Reliability. Vol. 43, 423-430.
- [18] Marseguerra, M. & Zio, E. (2001). Genetic Algorithms: Theory and Applications in the Safety Domain, In “The Abdus Salam International Centre for Theoretical Physics: Nuclear Reaction Data and Nuclear Reactors”, N. Paver, M. Herman and A. Gandini Eds., World Scientific Publisher, 655-695.
- [19] McCall, J. J. (1965). Maintenance policies for stochastically failing equipment: a survey, Management Sci., 11, 493-524.
- [20] Muller, B. & Reinhardt, J. (1991). Neural Networks - An introduction. Springer-Verlag, New York.
- [21] Rumelhart, D. E. & McClelland, J. L. (1986). Parallel distributed processin.. Vol. 1, MIT Press, Cambridge, MA.
- [22] Samanta, P. K., Vesely, W. E., Hsu, F. & Subudly, M. (1991). Degradation Modelling With Application to Ageing and Maintenance Effectiveness Evaluations. NUREG/CR-5612, U.S. Nuclear Regulatory Commission.
- [23] Soares, G. C. & Garbatov, Y. (1996). Fatigue reliability of the ship hull girder accounting for inspection and repair. Reliability Engineering and System Safety. Vol. 51, No. 2, 341-351.
- [24] Soares, G. C. & Garbatov, Y. (1999). Reliability of maintained, corrosion protected plates subjected to non-linear corrosion and compressive loads. Marine Structures. Vol. 12, No. 6, 425-446.
- [25] Takagi, H. (1997). Introduction to Fuzzy Systems, Neural Networks, and Genetic Algorithms, in Intelligent Hybrid Systems. Da Ruan Ed., Kluwer Academic Publishers.
- [26] Wang, W., Christer, A. H. & Jia, X. (1998). Determining the optimal condition monitoring and PM intervals on the basis of vibration analysis − A case study. Safety and Reliability. S. Lydersen, G. Hansen & H. Sandtorv (eds), Trondheim, Balkema, 241-246.
- [27] Yeh, R. H. (1997). State-age-dependent maintenance policies for deteriorating systems with Erlang sojourn time distributions. Reliability Engineering and System Safety. Vol. 58, 55-60.
- [28] Zadeh, L. A. (1965). Fuzzy Sets, Information and Control, Vol. 8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31a3b22b-421c-4415-b4f8-cfe75a0cee3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.