Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The mechanical behavior and the change of retained austenite of nanocrystalline Fe-Ni alloy have been investigated by considering the effect of various Ni addition amount. The nanocrystalline Fe-Ni alloy samples were rapidly fabricated by spark plasma sintering (SPS). The SPS is a well-known effective sintering process with an extremely short densification time not only to reach a theoretical density value but also to prevent a grain growth, which could result in a nanocrystalline structures. The effect of Ni addition on the compressive stress-strain behavior was analyzed. The variation of the volume fraction of retained austenite due to deformation was quantitatively measured by means of x-ray diffraction and microscope analyses. The strain-induced martensite transformation was observed in Fe-Ni alloy. The different amount of Ni influenced the rate of the strain-induced martensite transformation kinetics and resulted in the change of the work hardening during the compressive deformation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1477--1480
Opis fizyczny
Bibliogr. 18 poz., rys., wzory
Twórcy
autor
- Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea
autor
- Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea
autor
- Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea
autor
- Chonbuk National University, Division of Advanced Materials Engineering, 567 Baekje-Daero, Deokjin-Gu, Jeonju, 54896, Republic of Korea
Bibliografia
- [1] S. J. Lee, S. Lee, B. C. De Cooman, Scripta Mater. 64, 649 (2011).
- [2] S. Lee, S. J. Lee, B. C. De Cooman, Scripta Mater. 65, 225 (2011).
- [3] K. Kim, S. J. Lee, Mater. Sci. Eng. A 698, 183 (2017).
- [4] E. Jimenez-Melero, N. H. Dijk, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, S. Zwaag, Scripta Mater. 56, 421 (2007).
- [5] S. J. Lee, S. Lee, B. C. De Cooman, Int. J. Mater. Res. 104, 423 (2013).
- [6] J. Mahieu, J. Maki, B. C. De Cooman, S. Claessens, Metall. Mater. Trans. A. 33A, 2573 (2002).
- [7] G. B. Olson, M. Cohen, Metall. Trans A 6, 791 (1975).
- [8] G. N. Haidemenopoulos, A. T. Kermanidis, C. Malliaros, H. H. Dickert, P. Kucharzyk, W. Bleck, Mater. Sci. Eng. A 573, 7 (2013).
- [9] A. Järvenpää, M. Jaskari, J. Man, L. Pentti Karjalainen, Mater. Charac. 127, 12 (2017).
- [10] S. Kim, C. G. Lee, T. H. Lee, C. S. Oh, Scripta Mater. 48, 539 (2003).
- [11] M. B. Shongwe, S. Diouf, M. O. Durowoju, P. A. Olubambi, J. Alloys Compd. 649, 824 (2015).
- [12] C. H. Lim, J. S. Park, J. Y. Yun, J. K. Lee, J. Korean Powder Metall. Inst. 24, 53 (2017).
- [13] C. Suryanarayana, M. Grant Norton, X-ray diffraction A Practical Approach, Plenum Press, New York 1998.
- [14] Y. Huizhou, M. Harmelin, J. Bigot, Mater. Sci. Eng. A 124, 241 (1990).
- [15] ASTM E975-00, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, vol. 03. 01, ASTM International, W. Conshohocken, PA, 2003.
- [16] J. Burke, Kinetics of Phase Transformation in Metals, Pergamon Press, Oxford, United Kingdom, 1965.
- [17] O. Matsumura, Y. Sakuma, H. Takechi, Scripta Metall. 21, 1301 (1987).
- [18] N. Tsuchida, Y. Tomota, Mater. Sci. Eng. A 285, 345 (2000).
Uwagi
EN
1. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A1B03935163).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31a25c07-792f-4fe1-80ea-7bd84b0c414f