PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of total iron and silicon contents and homogenization on the microstructure and performance of 6201 Al–Mg–Si ingots

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, 6201 Al–Mg–Si cast ingots were investigated to determine the influence of total iron and silicon contents and homogenization on their microstructure and performance, including electrical and creep resistance. The tests included scanning electron microscopy, electron back scatter diffraction, and X-ray diffraction. The results showed that an increase in the total Fe and Si contents refined the microstructure, increased the weight of the ∑3 twin boundaries, and decreased the texture index FCGB in the initial Al–Mg–Si cast ingots. With increasing homogenization treatment time, the electrical conductivity (EC) in all three groups of homogenized ingots first decreased significantly (within 4 h) and then remained relatively stable. The increase in the total Fe and Si contents resulted in a decrease in the EC and an increase in the hardness of the as-homogenized cast ingot samples. The improvement in the EC of the initial and as-homogenized cast ingots was due to the high content of low-angle grain boundaries and strong Cube texture. The room-temperature creep resistance of the as-homogenized cast ingots was improved by high Fe and Si contents. The texture index FCGB and orientation streamline approach were determined to be powerful indicators for distinguishing and describing texture evolution during the homogenization of cast ingots with various chemical compositions.
Rocznik
Strony
art. no. e156, 2024
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
autor
  • School of Materials Science and Engineering, Central South University, Changsha 410083, China
  • Joint Lab of Advanced Materials, Dongguan Luxshare Technologies CO., Ltd, Dongguan 523808, China
autor
  • Joint Lab of Advanced Materials, Dongguan Luxshare Technologies CO., Ltd, Dongguan 523808, China
Bibliografia
  • 1. Kiessling F, Nefzger P, Nolasco JF, Kaintzyk U. Overhead powerlines: planning, design, construction. Berlin: Springer; 2014.
  • 2. Allamki A, Al-Maharbi M, Qamar SZ, Al-Jahwari F. Precipitation hardening of the electrical conductor aluminum alloy 6201.Metals. 2023;13(6):1111. https://doi.org/10.3390/met13061111.
  • 3. Cho CH, Cho H. Effect of dislocation characteristics on electrical conductivity and mechanical properties of AA 6201 wires. Mater Sci Eng A. 2021;809: 140811. https://doi.org/10.1016/j.msea.2021.140811.
  • 4. Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment forall-aluminium alloy conductors. Mater Des. 2006;27(10):821–32.https://doi.org/10.1016/j.matdes.2005.06.005.
  • 5. Sarafoglou PI, Serafeim A, Fanikos IA, Aristeidakis JS, Haideme-nopoulos GN. Modeling of microsegregation and homogenization of 6xxx Al-alloys including precipitation and strengthening during homogenization cooling. Materials. 2019;12(9):1421. https://doi.org/10.3390/ma12091421.
  • 6. Rossiter PL. The electrical resistivity of metals and alloys, vol. 6.Cambridge: Cambridge University Press; 1991.
  • 7. Yi JZ, Gao YX, Lee PD, Lindley TC. Effect of Fe-content on fatigue crack initiation and propagation in a cast aluminum–sili-con alloy (A356–T6). Mater Sci Eng A. 2004;386(1–2):396–407.https://doi.org/10.1016/j.msea.2004.07.044.
  • 8. Puncreobutr C, Lee PD, Kareh KM, Connolley T, Fife JL, Phillion AB. Influence of Ferich intermetallics on solidification defectsin Al–Si–Cu alloys. Acta Mater. 2014;68:42–51. https://doi.org/10.1016/j.actamat.2014.01.007.
  • 9. Moustafa MA. Effect of iron content on the formation ofβ-Al5FeSi and porosity in Al–Si eutectic alloys. J Mater Process Technol. 2009;209(1):605–10. https:// doi. org/ 10. 1016/j. jmatprotec.2008.02.073.
  • 10. Gan J, Du J, Wen C, Zhang G, Shi M, Yuan Z. The effect of Fecontent on the solidifycation pathway, microstructure and thermal conductivity of hypoeutectic Al–Si alloys. Int J Metalcast. 2022.https://doi.org/10.1007/s40962-021-00580-0.
  • 11. Hou JP, Li R, Wu XM, Yu HY, Zhang ZJ, Chen QY, et al. Micro-structure evolution and strength degradation mechanisms of high-strength Al–Fe wire. J Mater Sci. 2019;54:5032–43. https://doi.org/10.1007/s10853-018-3060-3.
  • 12. Zhao Q, Qian Z, Cui X, Wu Y, Liu X. Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al–Mg–Si alloy. J Alloy Compd. 2016;666:50–7.https://doi.org/10.1016/j.jallcom.2016.01.110.
  • 13. Ding W, Zhao X, Chen T, Zhang H, Liu X, Cheng Y, Lei D.Effect of rare earth Y and Al–Ti–B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. J Alloy Compd. 2020;830: 154685. https://doi.org/10.1016/j.jallcom.2020.154685.
  • 14. Wan B, Chen W, Liu L, Cao X, Zhou L, Fu Z. Effect of traceyttrium addition on the microstructure and tensile properties of recycled Al–7Si–0.3 Mg–1.0 Fe casting alloys. Mater Sci Eng, A. 2016;666:165–75. https://doi.org/10.1016/j.msea.2016.04.036.
  • 15. Yuan S, Chen L, Tang J, Zhao G, Zhang C, Yu J. Correlation between homogenization treatment and subsequent hot extrusion of Al–Mg–Si alloy. J Mater Sci. 2019;54:9843–56. https://doi.org/10.1007/s10853-019-03570-0.
  • 16. Birol Y. Effect of homogenization on recrystallization in atwin-roll cast Al–Fe–Si alloy. J Mater Sci. 2008;43(13):4652–7.https://doi.org/10.1007/s10853-008-2663-5.
  • 17. Shen F, Li W, Sun Z, Zhou Z, Xie C, Liao Z, Yi D. Insights of texture and microstructure evolution in the short time annealing of Al-Cu-Mg alloy at large temperature range. J Alloy Compd.2021;871: 159613. https://doi.org/10.1016/j.jallcom.2021.159613.
  • 18. Zhu J, Jiang W, Li G, Guan F, Yu Y, Fan Z. Microstructure and mechanical properties of SiC np /Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Mater Process Technol. 2020;283: 116699.
  • 19. Shen F, Sun Z, Li W, Zhou Z, Zhong S, Huang H, et al. Texture evolution in hot-rolled Al–Cu–Mg sheets using orientation streamline approach and texture index. J Alloy Compd.2020;816:152415. https://doi.org/10.1016/j.jallcom.2019.152415.
  • 20. Kashihara K, Inoko F. Effect of piled-up dislocations on strain induced boundary migration (SIBM) in deformed aluminium bicrystals with originally ∑ 3 twin boundary. Acta Mater.2001;49(15):3051–61.
  • 21. Saylor DM, El Dasher BS, Rollett AD, Rohrer GS. Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater. 2004;52(12):3649–55. https://doi.org/10.1016/j.actamat.2004.04.018.
  • 22. Fischer-Cripps AC. Nanoindentation test standards. In: Nanoindentation. Mechanical engineering series. Springer, New York;2011. https://doi.org/10.1007/978-1-4419-9872-9_10.
  • 23. Yang R, Zhang T, Jiang P, Bai Y. Experimental verification and theoretical analysis of the relationships between hardness, elastic modulus, and the work of indentation. Appl Phys Lett. 2008.https://doi.org/10.1063/1.2944138.
  • 24. Oyen ML, Cook RF. A practical guide for analysis of nanoindentation data. J Mech Behav Biomed Mater. 2009;2(4):396–407.https://doi.org/10.1016/j.jmbbm.2008.10.002.
  • 25. Jiang W, Zhu J, Li G, Guan F, Yu Y, Fan Z. Enhanced mechanical properties of 6082 aluminum alloy via SiC addition combined with squeeze casting. J Mater Sci Technol. 2021;88:119–31.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-319ce3d3-0b55-4eab-9537-2273c20b5b81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.