Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The textile industry produces liquid waste containing synthetic dyes, such as Remazol yellow FG, which are difficult to decompose naturally and negatively impact the environment. This study aims to evaluate the effectiveness of biochar derived from coffee fruit shell waste as an adsorbent for removing Remazol yellow FG dye from aqueous solutions. The method used includes pyrolyzing coffee fruit shell at 300 °C for 120 minutes to produce biochar, which is then tested for its dye adsorption capacity through batch experiments with varying dye concentration, pH levels, and contact time. The results showed that coffee fruit shell biochar had a high adsorption capacity at pH 4 and a contact time of 80 minutes. The process of adsorption followed the Langmuir isotherm model with a value r2 of 0.91507 for non-active biochar adsorbent and 0.92372 for biochar that had been activated with NaOH. Adsorption kinetics followed second-order kinetics with r2 reaching 0.96189 for non-active biochar and 0.96697 for biochar activated with NaOH. The effectiveness of biochar under laboratory conditions highlights its potential as a more economical and environmentally friendly adsorbent compared to commercial activated carbon. This research contributes to the development of liquid waste treatment technologies based on renewable materials, supporting the circular economy in the textile industry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
273--285
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Jl. Udayana Singaraja, Bali 81117, Indonesia
- Student in the Environmental Science Doctoral Program at Udayana University, Jl. PB. Sudirman, Denpasar, Bali, Indonesia
autor
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Badung, Bali 80361, Indonesia
autor
- Animal Nutrition Department, Faculty of Animal Husbandry, Udayana University, Jimbaran, Badung, Bali 80361, Indonesia
autor
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran, Badung, Bali 80361, Indonesia
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Jl. Udayana Singaraja, Bali 81117, Indonesia
Bibliografia
- 1. Abbate, S., Centobelli, P., Cerchione, R., & Peter, S. (2024). Sustainability trends and gaps in the textile, apparel and fashion industries. Environment, Development and Sustainability, 26(2), 2837–2864.
- 2. Ahmad, M. A., & Rahman, N. K. (2011). Equilibrium, kinetics and thermodynamic of Remazol brilliant orange 3R dye adsorption on coffee husk-based activated carbon. Chemical Engineering Journal, 170(1), 154–161.
- 3. Alfei, S., Grasso, F., Orlandi, V., Russo, E., & Boggia, R. (2023). Cationic polystyrene-based hydrogels as efficient adsorbents to remove methyl orange and fluorescein dye pollutants from industrial wastewater. International Journal of Molecular Sciences, 23(3), 1–33.
- 4. Ali, N.S., Jabbar, N.M., Alardhi, S.M., Majdi, H.S., Albayati, T.M. (2022). Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: Isotherm, kinetics, and thermodynamic studies. Heliyon, 8, e10276.
- 5. Aragaw, T. A., Bogale, F. M., & Gessesse, A. (2022). Adaptive response of thermophiles to redox stress and their role in the process of dye degradation from textile industry wastewater. Frontiers in Physiology, 13, 1–14.
- 6. Ayari, F., Mezghuich, S., Othmen, A.B., Trabelsi- Ayadi, M. (2018). Evaluation of adsorptive capacity of natural biosorbent for dye removal as a contribution to environmental protection: effect of various parameters. Desalination and Water Treatment, 105, 332–342.
- 7. Baunsele, A. B., & Missa, H. (2020). Kajian kinetika adsorpsi metilen biru menggunakan adsorben sabut kelapa. Akta Kimia Indonesia, 5(2), 76–85.
- 8. Bawa, I. G. A. G. (2023). Combined absorbent of corn husks and eggshells activated by sodium hydroxide as an adsorbent for Remazol Yellow FG dye in textile waste. Journal of Applied and Natural Science, 15(4), 1582–1586.
- 9. Dittmann, D., Saal, L., Zietzschmann, F., Mai, M., Altmann, K., Al, D., Pia, S., Ruhl, A. S., Jekel, M., & Braun, U. (2022). Characterization of activated carbons for water treatment using TGA FTIR for analysis of oxygen containing functional groups. Applied Water Science, 12(8), 1–13.
- 10. Elbadawy, H. A., El-dissouky, A., Hussein, S. M., El-kewaey, S. R., Elfeky, S. A., & El-ghannam, G. (2023). A novel terpolymer nanocomposite (carboxymethyl β-cyclodextrin-nano chitosan- glutaraldehyde) for the potential removal of a textile dye acid red 37 from water. Frontiers in Chemistry, 11(February), 1–13.
- 11. Elystia, S., Pratiwi, R. R., & Muria, S. R. (2018). Jurnal dampak biosorpsi kromium (Cr) pada limbah cair industri elektroplating menggunakan biomassa ragi roti (Saccharomyces cerevisiae). Jurnal Dampak, 1(2017), 1–6.
- 12. Hung, N. V., Ngunyet, B. T. M., Nghi, N. H., Thanhm N. M., Quyen, N. D. V., Nguyen, V. T., Nhiem, D.N., & Khieu, D.Q.(2023). Highly effective adsorption of organic dyes from aqueous solutions on longan seed-derived activated carbon. Environmental Engineering Research,28(3), 1–14.
- 13. Jahan, N., Tahmid, M., Shoronika, A. Z., Fariha, A., Roy, H., Pervez, N., Cai, Y., Naddeo, V., & Islam, S. (2022). A comprehensive review on the sustainable treatment of textile wastewater: zero liquid discharge and resource recovery perspectives. Sustainability, 14, 1–38.
- 14. Kalina, M., Sovova, S., Hajzler, J., Kubikova, L., Trudicova, M., & Smilek, J. (2022). Biochar texture-a parameter influencing physicochemical properties, morphology, and agronomical potential. Agronomy, 12(8), 1–16.
- 15. Kene, S., and Ryan, C. (2022) Biochar from food waste as a sustainable replacement for carbon black in upcycled or compostable composites. Composites Part C, 8(100274), 1–11.
- 16. Kerie E. & Alemu A. (2022). Removal of acid yellow dye 17 from aqueous solutions using an activated bone char. Water Quality Research Journal. 57 (4) 278-290.
- 17. Kumar, S., & Saha, A. (2024). Utilization of coconut shell biomass residue to develop sustainable biocomposites and characterize the physical, mechanical, thermal, and water absorption properties. Biomass Conversion and Biorefinery, 14, 12815–12831.
- 18. Lou, Z., Zheng, Z., Yan, N., Jiang, X., Zhang, X., Chen, S., Xu, R., Liu, C., & Xu, L. (2023). Modification and Application of Bamboo-Based Materials : A Review-Part II : Application of Bamboo-Based Materials. Forests, 14(11), 1–25.
- 19. Motte, H. De, & Ostlund, A. (2022). Sustainable fashion and textile recycling. Sustainability, 14(22), 1–3.
- 20. National Standardization Agency. 1995. Technical Activated Carbon. SNI-06-3730-1995. Jakarta.
- 21. Pellicer, A., Teresa, G., Auñ, D., Vicente, M. G., Gil-izquierdo, Á., & Cer, P. (2022). Removal of an azo dye from wastewater through the use of two technologies : magnetic cyclodextrin polymers and pulsed light. International Journal of Molecular Sciences, 23(15), 1–20.
- 22. Pimentel, C.H., Castro Agra, R., Freire, M.S., Gómez Díaz, D., González Álvarez, J. (2024). Adsorption of anionic wood dyes on KOH activated carbons from Pinus radiata sawdust. Biomass Conversion and Biorefnery, https://doi.org/10.1007/ s13399-024-05587-1
- 23. Ramadhani, E.D., & Kurniawati, D. (2021). Effect of contact time and agitation speed on the adsorption process of methylene blue dyes using longan shell (Euphoria longan L.) as Biosorbent. American Journal of Sciences and Engineering Research, 4(6), 143–149.
- 25. Remediation, C. S., Franco, C. A., & Cort, F. B. (2022). Application of orange peel waste as adsorbent for methylene. Molecules, 27(16), 1–17.
- 26. Sait, H.H., Hussain, A., Bassyouni, M., Ali, I., Kanthasamy, R., Ayodele, B.V., & Elhenawy, Y. (2022). Anionic dye removal using a date palm seed-derived activated carbon/chitosan polymer microbead biocomposite. Polymers, 14(12), 1–21.
- 27. Santana, R., Vieira, L., Charamba, C., Gomes, J., Coelho, B. B., Maria, M., & Bezerra, M. (2017). Degradation of textile dyes Remazol Yellow Gold and reactive Turquoise: optimization, toxicity and modeling by arti fi cial neural networks Graziele Elisandra do Nascimento, Daniella Carla Napoleão, Rayany Correia de Oliveira, Maiara Celine de Moura. Water Science & Technology, 3, 812–823.
- 28. Serafin, J., & Dziejarski, B. (2024). Special adsorbent materials for retention and degradation Activated carbons-preparation, characterization and their application in-CO2 capture: A review. In Environmental Science and Pollution Research 31(28) 40008-40062
- 29. Serban, G.V., Iancu, V.I., Dinu, C., Tenea, A., Vasilache, N., Cristea, I., Niculescu, M., Ionescu, I., & Chiriac, F.L. (2023). Removal efficiency and adsorption kinetics of methyl orange from wastewater by commercial activated carbon. Sustainability, 15, 12939.
- 30. Setiawan, A., Basyiruddin, F., & Dermawan, D. (2019). Biosorpsi logam berat Cu(II) menggunakan limbah saccharomyces cerevisiae. Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, 16(1), 29–35.
- 31. Sharma, P., & Kaur, H. (2011). Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste. Applied Water Science, 1, 135–145.
- 32. Singh, P., Dubey, P., Younis, K., & Yousuf, O. (2024). A review on the valorization of coconut shell waste. Biomass Conversion and Biorefinery, 14, 8115–8125.
- 33. Suárez, L. A. C., Sánchez, A. G. S., Hernández, I. L., & Miranda, V. M. (2023). A critical review of textile industry wastewater : green technologies for the removal of indigo dyes. International Journal of Environmental Science and Technology 20(9), 10553–10590.
- 34. Sudiana, I. K., Sastrawidana, I. D. K., & Sukarta, I. N. (2022). Adsorption kinetic and isotherm studies of reactive red b textile dye removal using activated coconut leaf stalk. Ecological Engineering & Environmental Technology, 23(5), 61–71.
- 35. Sugiani, W. N., Tiwow, V. M. A., & Jura, M. R. (2021). The utilization of candlenut shell active biochar as absorbent of lead ions in used oil. Jurnal Akademika Kimia, 10(2), 59–63.
- 36. Sukarta, I. N., Putu, N., Ayuni, S., & Sastrawidana, I. D. K. (2021). Utilization of Khamir (Saccharomyces cerevisiae) as adsorbent of Remazol Red RB textile dyes. Ecological Engineering & Environmental Technology, 22(1), 117–123.
- 37. Sukarta, I. N., Sastrawidana, I. D. K., & Suyasa, I. W. B. (2023). Proximate analysis and calorific value of fuel briquettes from wood and coffee shells biomass as a renewable energy source. Ecological Engineering & Environmental Technology, 24(8), 293–300.
- 38. Sunarti, Kayadoe, V., & Sarifa Yusuf, S. M. (2022). Pemanfaatan Arang Aktif Dari Limbah Sabut Kelapa Sawit (Elaeis Guineensis Jacq) Sebagai Adsorben Logam Pb. Molluca Journal of Chemistry Education, 12(1), 1–7.
- 39. Tarikuzzaman, M. (2023). A Review on Activated Carbon : Synthesis, Properties, and Applications. European Journal of Advances in Engineering and Technology, 10(1), 114–123.
- 40. Thanavel, M., Bankole, P. O., & Selvam, R. (2020). Synergistic effect of biological and advanced oxidation process treatment in the biodegradation of Remazol yellow RR dye. Scientific Reports, 1–9.
- 41. Vojnovic, B., Cetina M., Franjkovic P., & Sutlovic A. (2022). Influence of initial ph value on the adsorption of reactive black 5 dye on powdered activated carbon: kinetics, mechanisms, and thermodynamics. Molecules, 27 (4), 1–12.
- 42. Walanda, D. K., Anshary, A., Napitupulu, M., & Walanda, R. M. (2022). The Utilization of corn stalks as biochar to adsorb bod and cod in hospital wastewater. International Journal of Design & Nature and Ecodynamics, 17(1), 113–118.
- 43. Zhai, H., Liu, Z., Xu, L., Liu, T., Fan, Y., Jin, L., Dong, R., Yi, Y., & Li, Y. (2022). Waste textile reutilization via a scalable dyeing technology : a strategy to enhance dyestuffs degradation efficiency. Advanced Fiber Materials, 4, 1595–1608.
- 44. Zhang, Y., Liu, W., Hu, J., Lin, J., & Huang, Y. (2024). Novel bamboo derived composites for the efficient adsorption of a methylene blue pollutant. Journal of Materials Science. 59, 18533–18547.
Uwagi
Błędna numeracja bibliografii (brak pozycji 24)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-319ca48a-edea-4115-8acb-21496bcbbb8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.