PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Air Quality Assessment and Forecasting Using Neural Network Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Air pollution is a major obstacle faced by all countries which impacts the environment, public health, socioeconomics, and agriculture. In this study, the air pollutants in the city of Amman were presented and analyzed. Nonlinear Autoregressive Exogenous (NARX) model was used to forecast the daily average levels of pollutants in Amman, Jordan. The model was built using the MATLAB software. The model utilized a Marquardt-Levenberg learning algorithm. Its performance was presented using different indices, R2 (Coefficient of Determination), R (Coefficient of Correlation), NMSE (Normalized Mean Square Error), and Plots representing network predictions vs original data. Historical measurements of air pollutants were obtained from 4 of the Ministry of Environment (MoEnv) air quality monitoring stations in Amman. The meteorological data representing three years (2015, 2016, and 2017) were used as predictors to train the Artificial Neural Network (ANN) while the data of the year 2018 were used to test it. The results showed good performance when forecasting SO2, O3, CO, and NO2, and acceptable performance when forecasting Particulate Matter (PM10) at the given 4 locations.
Słowa kluczowe
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, The University of Jordan, Amman 11942, Jordan
  • Department of Mechanical Engineering, The University of Jordan, Amman 11942, Jordan
  • Department of Mechanical Engineering, The University of Jordan, Amman 11942, Jordan
  • Department of Mechanical and Industrial Engineering, American University of Ras Al Khaimah, 10021, United Arab Emirates
Bibliografia
  • 1. Al-Hinti I., Al-Ghandoor A., Sakhrieh A., Akash B., Abu-Nada E. 2013. A comparative analysis of energy indicators and CO2 emissions in 15 Arab countries. International Journal of Environment and Waste Management 11(2), 129–147.
  • 2. Al Rawashdeh, S., & Saleh, B. 2006. Satellite Monitoring of Urban Spatial Growth in the Amman Area, Jordan. Journal of Urban Planning and Development, 132.
  • 3. Alkasassbeh, M., Sheta, A., Faris, H., & Turabieh, H. 2013. Prediction of PM10 and TSP air pollution parameters using artificial neural network autoregressive, external input models: A case study in Salt, Jordan. Middle-East Journal of Scientific Research, 14, 999–1009.
  • 4. Azher Hassan, M., & Dong, Z. 2018. Analysis of Tropospheric Ozone by Artificial Neural Network Approach in Beijing. Journal of Geoscience and Environment Protection, 6, 8–17.
  • 5. Baareh, A. 2013. Solving the Carbon Dioxide Emission Estimation Problem: An Artificial Neural Network Model. Journal of Software Engineering and Applications, 6, 338–342.
  • 6. Burnett, M.L. 1998. The pollution prevention act of 1990: A policy whose time has come or symbolic legislation? Environmental Management, 22, 213–224. Retrieved from https://link.springer.com/article/10.1007%2Fs002679900098
  • 7. Company, N.E. 2017. Annual Report 2017. Retrieved from http://www.nepco.com.jo/store/docs/web/2017_en.pdf
  • 8. Department of Statisics 2018. Population Estimates. Retrieved from http://dosweb.dos.gov.jo/DataBank/Population_Estimares/PopulationEstimates.pdf
  • 9. Durão R.M., Mendes M.T., Pereira M.J. 2016. Forecasting O3 Levels in industrial area surroundings up to 24 h in advance combining classification trees and MLP models. Atmos Pollut Res 7(6), 961–970
  • 10. Gardner, M., & Dorling, S. 1999. Neural network modelling and prediction of hourly NOX and NO2 concentrations in urban air in London. Atmospheric Environment, 33, 709–719.
  • 11. Grander, M., & Dorling, S. 1998. Artificial neural networks (the multilayer perceptron). A review of application in the atmosphere sciences. Atmospheric Environment, 32, 2627–2636.
  • 12. Hadadin, N., & Tarwaneh, S. 2007. Environmental Issues in Jordan, Solutions and Recommendations. American journal of environmental sciences .
  • 13. Iliyas S.A., Elshafei M., Habib M.A., Adeniran A.A. 2013. RBF neural network inferential sensor for process emission monitoring. Control Eng Pract 21(7), 962–970
  • 14. Li, M., Jin, L., & Jin, J. 2015. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Track. Mathematical Problems in Engineering, 2015, 1–8.
  • 15. MoEnv. 2018. Yealy report for air quality monitoring. Minisitry of Environment.
  • 16. MoEnv. 2019. AIR Reports. Ministry of Environment. Retrieved from http://moenv.gov.jo/EN/Pages/Air_reports.aspx
  • 17. Mosely, S. 2014. The Basic Environmental History.
  • 18. Nunez, C. 2019. Climate 101: Air pollution. Retrieved from National Geographic: https://www.nationalgeographic.com/environment/global-warming/pollution/
  • 19. Patra A.K., Gautam S., Majumdar S., Kumar P. 2016. Prediction of particulate matter concentration profile in an opencast copper mine in India using an artificial neural network model. Air Qual Atmos Health 9, 697–711
  • 20. Perez, P. 2001. Concentration at site near downtown Santiago,Chile Prediction. Atmosphiric Environment Vol.35.
  • 21. Perez, P. 2001. Prediction of sulfur dioxide concentrations at a site near downtown Santiago,Chile. Atmospheric Environment, 35, 4929–4935.
  • 22. Perez, P., & Reyes, J. 2001. Prediction of Particulate Air Pollution Using Neural Techniques. Neural Computing & Applications, 10, 165–171.
  • 23. Prasad K., Gorai A.K., Goyal P. 2016. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos Environ 128, 246–262
  • 24. Ramakrishna, K. 2000. The UNFCCC–History and Evolution of the Climate Change Negotiations. Retrieved from https://www.researchgate.net/publication/228425602_The_UNFCCC-History_and_Evolution_of_the_Climate_Change_Negotiations
  • 25. Russo A., Lind P.G., Raischel F., Trigo R., Mendes M. 2015. Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos Pollut Res 6, 540–549
  • 26. Sabri, G., & Khadir, M. 2009. Recurrent neural network for air pollution peaks prediction for the region of Annaba-Algeria. Intelligent Information Systems, 9999, 1–9.
  • 27. Sangeetha, A., & Amudha, T. 2018. A Novel BioInspired Framework for CO2 Emission Forecast in India. Procedia Computer Science, 125, 367–375.
  • 28. Tecer, L. 2007. Prediction of SO2 and PM concentrations in a coastal mining area (Zonguldak, Turkey) using an artificial neural network. Polish Journal of Environmental Studies. 16. 633–638.
  • 29. Wang D., Lu W-Z. 2006. Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm. Atmos Environ 40(5):913–924
  • 30. WHO. 2016. Air pollution. Retrieved from https://www.who.int/airpollution/en/
  • 31. Yi, J., & Prybutok, V. 1996. A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92, 349–357.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3195c895-f802-437d-8c4f-887323102761
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.