PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct unavailability calculations of highly reliable systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a new analytical algorithm which is able to carry out direct and exact reliability quantification of highly reliable systems with maintenance (both preventive and corrective). A directed acyclic graph is used as a system representation. The algorithm allows take into account highly reliable and maintained input components. All considered models are implemented into the new algorithm. The algorithm is based on a special new procedure which permits only summarization between two or more non-negative numbers that can be very different. If the summarization of very small positive numbers transformed into the machine code is performed effectively no error is committed at the operation. Reliability quantification is demonstrated on a real system from practice and on its highly reliable modifications. The selected system is frequently used system - high pressure injection system occurring in many late references.
Rocznik
Tom
Strony
67--76
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • Technical University of Ostrava, Ostrava, Czech Republic
Bibliografia
  • [1] Marseguerra, M, & Zio, E. (2001). Principles of Monte Carlo simulation for application to reliability and availability analysis. In: Zio E, Demichela M, Piccinini N, editors. Safety and reliability towards a safer world, Torino, Italy, September 16–20, 2001. Tutorial notes. p. 37-62.
  • [2] Tanaka, T, Kumamoto, H. & Inoue, K. (1989). Evaluation of a dynamic reliability problem based on order of component failure. IEEE Trans Reliab 38, 573–6.
  • [3] Baca, A. (1993). Examples of Monte Carlo methods in reliability estimation based on reduction of prior information. IEEE Trans Reliab 42 (4), 645–9.
  • [4] Briš, R. (2008). Parallel simulation algorithm for maintenance optimization based on directed Acyclic Graph. Reliab Eng Syst Saf 93, 852-62.
  • [5] Choi, J. S. & Cho, N. Z. (2007). A practical method for accurate quantification of large fault trees. Reliab Eng Syst Saf 92, 971-82.
  • [6] Dutuit, Y. & Rauzy, A. (2005). Approximate estimation of system reliability via fault trees. Reliab Eng Syst Saf 87, 163-72.
  • [7] Rahnamai, K. R., Caglayan, A. K. & Stubbs, C. L. (1989). Enforced software diversity for a tracking application. Final Report No. R8908 for NASA, Contract No. NAS1-17705.
  • [8] Mochizuki, Y., Hayashi, Y., Oda, N., Takeuchi, K. & Takeda, K. (2006). Technology for High Reliability System LSIs. NEC Technical Journal 1, No 3.
  • [9] Briš, R. (2007). Stochastic Ageing Models – Extensions of the Classic Renewal Theory. Reliability: Theory & Applications, ISSN 1932-2321, 2 (3-4), 19-27.
  • [10] Briš, R. & Drábek, V. (2007). Mathematical Modeling of both Monitored and Dormant Failures. In: Lisa Bartlett, editor. Advances in Risk and Reliability Technology Symposium. Published by Loughborough University , 376-393.
  • [11] Dutuit, Y. & Chatelet, E. (1997). TEST CASE No. 1, Periodically tested parallel system. Test-case activity of European Safety and Reliability Association. ISdF-ESRA 1997. In: Workshop within the European conference on safety and reliability ESREL 1997, Lisbon.
  • [12] Bris, R. (2008). Exact reliability quantification of highly reliable systems with maintenance. Safety, Reliability and Risk Analysis: Theory, Methods and Applications – Martorell et al. (eds), Taylor & Francis Group, pg. 489-496, ISBN 978-0-415-48513-5.
  • [13] Harunuzzaman, M. & Aldemir, T. (1996). Optimization of standby safety system maintenance schedules in nuclear power plants. Nuclear Technology 113, 354–67.
  • [14] Martorell, S. Carlos, S., Villanueva J. F., Sanchez, A. I., Galvan, B., Salazar, D. & Cepin, M., (2006). Use of multiple objective evolutionary algorithms in optimizing surveillance requirements. Reliability Engineering and System Safety 91, 1027–1038.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3195c3c1-8ab8-48a6-83f2-d388b7e619d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.