PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of artificial neural networks for the prediction of the service conditions of an elastohydrodynamic EHL contact in the presence of solid pollutant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lubricated mechanical mechanisms operate under service conditions influenced by several environmental parameters, and their life times may be threatened due to inappropriate use or by the presence of solid contaminants. The objective of this work is to study the effect of three operating parameters, namely: rotational speed 𝑉, load 𝑄 and kinematic viscosity 𝜈 in the presence of three sizes of solid contaminants 𝑇, on the degradation of an EHL contact, to predict the ranges of effects that may lead to the damage of the contacting surfaces. In our investigation, anexperimental design of nine trials is used to combine four factors with three levels each to accomplish the experimental investigation. Artificial neural network regression and the desirability function were used for the interpretation and modelling of the responses, whichare: wear 𝑊, arithmetic mean height 𝑅𝑎, total profile height 𝑅𝑡 and maximum profile height 𝑅𝑧. From these methods we observed that the sand grain sizes have a significant impact on the wear 𝑊 and the roughness 𝑅𝑎, but that viscosity has the primary influence on the variation of the roughnesses 𝑅𝑡 and 𝑅𝑧. We also found that the quality of the predicted models is very good, with overall determination coefficients of 𝑅2 learning = 0.9985 and 𝑅2 validation = 0.9996. Several levels of degradation depending on the operating conditions are predicted using the desirability function.
Czasopismo
Rocznik
Strony
art. no. 2024107
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Laboratory of Mechanical Engineering and Materials, University of August 20, 1955- Skikda, Algeria
  • Department of Mechanical Engineering, University of August 20, 1955-Skikda, Algeria
  • Laboratory of Mechanical Engineering and Materials, University of August 20, 1955- Skikda, Algeria
  • Department of Mechanical Engineering, University of August 20, 1955-Skikda, Algeria
  • Department of Mechanical Engineering, University of August 20, 1955-Skikda, Algeria
  • Department of Petrochemical, University of August 20, 1955-Skikda, Algeria
Bibliografia
  • 1. Zhu D, Wang QJ. EHL History (Elastohydrodynamic Lubrication). Encyclopedia of Tribology 2013 s. 832-47. https://doi.org/10.1007/978-0-387-92897-5_625.
  • 2. Lugt PM, Morales-Espejel GE. A Review of Elasto Hydrodynamic Lubrication Theory. Tribology Transactions 2011; 54(3): 470-96. https://doi.org/10.1080/10402004.2010.551804.
  • 3. Krupka I, Sperka P, Hartl M. Effect of surface roughness on lubricant film breakdown and transition from EHL to mixed lubrication. Tribology International 2016; 100: 116-25. https://doi.org/10.1016/j.triboint.2015.12.008.
  • 4. Guegan J, Kadiric A, Spikes H. A Study of the Lubrication of EHL Point Contact in the Presence of Longitudinal Roughness. Tribology Letters 2015; 59(1): 22. https://doi.org/10.1007/s11249-015-0549-7.
  • 5. Azman SSN, Zulkifli NWM, Masjuki H, Gulzar M, Zahid R. Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. Journal of Materials Research 2016; 31(13): 1932-8. https://doi.org/10.1557/jmr.2016.24.
  • 6. Senatore A, D’Agostino V, Petrone V, Sarno M, Ciambelli P. Graphene oxide nanosheets as effective friction modifier for oil lubricant: Materials, methods, and tribological results. International Scholarly Research Notices 2013; e425809. https://doi.org/10.5402/2013/425809.
  • 7. Ryniewicz AM, Bojko Ł, Madej T. The estimation of lubricity and viscosity of engine oils. Diagnostyka 2014;15(1):61-66.
  • 8. Jakubek B, Barczewski R. The influence of kinematic viscosity of a lubricant on broadband rolling bearing vibrations in amplitude terms. Diagnostyka 2018; 20(1): 93-102. https://doi.org/10.29354/diag/100440.
  • 9. Roelands CJA. Correlational. aspects of the viscosity temperature-pressure relationship of lubricatin goils. Journal of Lubrication Technology 1966; 93(1), p209. http://resolver.tudelft.nl/uuid:1fb56839-9589-4ffb98aa-4a20968d1f90.
  • 10. Dwyer-Joyce RS, Reddyhoff T, Zhu J. Ultrasonic measurement for film thickness and solid contact in elastohydrodynamic lubrication. Journal of Tribology 2011; 133(031501). https://doi.org/10.1115/1.4004105.
  • 11. Chen K, Zeng L, Chen J, Ding X. Analysis of line contact elastohydrodynamic lubrication with the particles under rough contact surface. Advances in Materials Science and Engineering 2020; 2020: e5420426. https://doi.org/10.1155/2020/5420426.
  • 12. Shengguang Z, Wenzhong W, Ziqiang Z. Elastohydrodynamic Lubrication Analysis of Point Contacts With Consideration of Material Inhomogeneity. Journal of Tribology 2014; 136(041501). https://doi.org/10.1115/1.4027750.
  • 13. Wang Z, Han B, Sun L. Analysis of Elastohydrodynamic Lubrication (EHL) Characteristics of Port Plate Pair of a Piston Pump. Machines 2022; 10(12): 1109. https://doi.org/10.3390/machines10121109.
  • 14. Patir N, Cheng HS. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Lubrication Technology 1978; 100(1): 12-17.
  • 15. Krupka I, Sperka P, Hartl M. Effect of surface roughness on lubricant film breakdown and transition from EHL to mixed lubrication. Tribology International 2016. 100: 116-125.
  • 16. Zapletal T, Sperka P, Krupka I, Hartl M. The effect of surface roughness on friction and film thickness in transition from EHL to mixed lubrication. Tribology International 2018; 128: 356-64. https://doi.org/10.1016/j.triboint.2018.07.047.
  • 17. Morales-Espejel GE. Surface roughness effects in elastohydrodynamic lubrication: A review with contributions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2014; 228(11): 1217-42. https://doi.org/10.1177/1350650113513572.
  • 18. Greenwood JA, Morales-Espejel GE. The behaviour of transverse roughness in EHL contacts. Proceedings of the Institution of Mechanical Engineers 1994; 208: 121-132.
  • 19. Hansen J, Björling M, Larsson R. A New film parameter for roughsurface EHL contacts with anisotropic and isotropic structures. Tribology Letters 2021; 69(2): 37. https://doi.org/10.1007/s11249-021-01411-3.
  • 20. Bonetto A, Nélias D, Chaise T, Zamponi LA. Coupled euler-lagrange model for more realistic simulation of debrisdenting in rolling element bearings. Tribology Transactions 2019; 62(5): 760-778.
  • 21. George K Nikas. Particle entrapment in elliptical, elastohydrodynamic, rough contacts and the influence of intermolecular (van der Waals) forces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2021; 235(11): 2227-2246.
  • 22. Sui T, Song B, Zhang F, Chen Y, Yan S, Wang A, Ding M. The flow characteristics of solid particles used as additives for lubricants in the point contact area. RSC Advances 2018; 8(17): 9457-9461.
  • 23. Strubel V, Simoens S, Vergne P, Fillot N, Ville F, El Hajem M, Devaux N, Mondelin A, Maheo Y. Fluorescence tracking and µ-PIV of individual particles and lubricant flow in and around lubricated point contacts. Tribology Letters 2017; 65: 3.
  • 24. Sari MR, Maatallah S, Adjabi R, Khochemane L. Experimental and statistical investigation on the failure of contaminated elastohydrodynamic lubrication rolling contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2016; 230(3): 300-22. https://doi.org/10.1177/1350650115600738.
  • 25. Maatallah S, Sari MR, Khochemane L. Effect of Lubricant Contamination on EHL Rolling Contact: Response Surface Methodology. Transactions d'ingénierie 2016; 64(1): 69-88. www.entra.put.poznan.pl/index.php/et/article/view/270/249.
  • 26. Derringer D, Suich R. Simultaneous optimisation of several response variables. Journal of Quality Technology 1980; 12: 214-219.
  • 27. Fabrice Ville. Pollution solide des lubrifiants, indentation et fatigue des surfaces. Sciences de l’ingénieur. INSA de Lyon 1998.
  • 28. Chevalier F, Lubrecht AA, Cann PME, Colin F, Dalmaz G. Film thickness in starved EHL point contacts. Journal of Tribology 1998; 120(1): 126-133.
  • 29. Damiens B, Venner CH, Cann PME, Lubrecht, AA. Starved lubrication of elliptical EHD contacts. Journal of Tribology 2004; 126(1): 105-111.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3194cc94-6f08-480f-a207-30ec9f7c9138
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.