PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Ensemble learning techniques for transmission quality classification in a Pay&Require multi-layer network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to a continuous increase in the use of computer networks, it has become important to ensure the quality of data transmission over the network. The key issue in the quality assurance is the translation of parameters describing transmission quality to a certain rating scale. This article presents a technique that allows assessing transmission quality parameters. Thanks to the application of machine learning, it is easy to translate transmission quality parameters, i.e., delay, bandwidth, packet loss ratio and jitter, into a scale understandable by the end user. In this paper we propose six new ensembles of classifiers. Each classification algorithm is combined with preprocessing, cross-validation and genetic optimization. Most ensembles utilize several classification layers in which popular classifiers are used. For the purpose of the machine learning process, we have created a data set consisting of 100 samples described by four features, and the label which describes quality. Our previous research was conducted with respect to single classifiers. The results obtained now, in comparison with the previous ones, are satisfactory—high classification accuracy is reached, along with 94% sensitivity (overall accuracy) with 6/100 incorrect classifications. The suggested solution appears to be reliable and can be successfully applied in practice.
Rocznik
Strony
135--153
Opis fizyczny
Bibliogr. 67 poz., rys., tab., wykr.
Twórcy
  • Department of Information and Communications Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
  • Department of Information and Communications Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland; Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] Acosta, J.R. and Avresky, D.R. (2005). Dynamic network reconfiguration in presence of multiple node and link failures using autonomous agents, 2005 International Conference on Collaborative Computing: Networking, Applications and Worksharing, San Jose, USA.
  • [2] Altman, N. (1992). An introduction to kernel and nearest neighbor non parametric regression, The American Statistician 46(3): 175–185.
  • [3] Augustyniak, P. and Tadeusiewicz, R. (2006). Assessment of electrocardiogram visual interpretation strategy based on scanpath analysis, Physiological Measurement 27(7): 597–608.
  • [4] Breiman, L. (2001). Random forests, Machine Learning 45: 5–32.
  • [5] Chang, C.C. and Lin, C.J. (2011). LibSVM:A library for support vector machines, ACM Transactions on Intelligent Systems and Technology 2(3).
  • [6] Chen, J., Wang, X., Cheng, Z. and Qin, J. (2017). On wireless sensor network mobile agent multi-objective optimization route planning algorithm, 2017 IEEE International Conference on Agents, Beijing, China, pp. 101–103.
  • [7] Chowdhury, C. and Neogy, S. (2012). Reliability of mobile agent system in QoS mobile network, 2012 4th International Conference on Communication Systems and Networks, Bangalore, India, pp. 1–2.
  • [8] Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine Learning 20: 273–297.
  • [9] C-SVC (2021). https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.
  • [10] Dong, S., Zhou, D. and Ding, W. (2012). The study of network traffic identification based on machine learning algorithm, 2012 4th International Conference on Computational Intelligence and Communication Networks, Mathura, India, pp. 205–208.
  • [11] Elnaka, A.M. and Mahmoud, Q.H. (2013). Real-time traffic classification for unified communication networks, 2013 International Conference on Selected Topics in Mobile and Wireless Networking, Montreal, Canada.
  • [12] ExtraTreesClassifier (2021). https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html.
  • [13] Fan, R.E., Chang, K.W., Hsieh, C., Wang, X. and Lin, C.J. (2008). Liblinear: A library for large linear classification, Journal of Machine Learning Research 9(9): 1871–1874.
  • [14] Feng, C., Wu, S. and Liu, N. (2017). A user-centric machine learning framework for cyber security operations center, 2017 IEEE International Conference on Intelligence and Security Informatics, Beijing, China, pp. 173–175.
  • [15] F1 Score (2021). https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html.
  • [16] Geurts, P., Ernst, D. and Wehenkel, L. (2006). Extremely randomized trees, Machine Learning 63: 3–42.
  • [17] Grzonka, D., Kołodziej, J. and Jakóbik, A. (2019). Agent-based monitoring of the task scheduling in computational clouds, Journal of Intelligent & Fuzzy Systems 37(9): 1–12.
  • [18] Hsiang-Fu, Y., Fang-Lan, H. and Chih-Jen, L. (2011). Dual coordinate descent methods for logistic regression and maximum entropy models, Machine Learning 85(1–2): 41–75.
  • [19] Hu, F., Hao, Q. and Bao, K. (2014). A survey on software-defined network and openflow: From concept to implementation, IEEE Communications Surveys Tutorials 16(4): 2181–2206.
  • [20] Huang, C.-J., Liu, M.-C., Chu, S.-S. and Cheng, C.-L. (2004). Application of machine learning techniques to web-based intelligent learning diagnosis system, 4th International Conference on Hybrid Intelligent Systems, Kitakyushu, Japan, pp. 242–247.
  • [21] Hussain, S., Shakshuki, E. and Matin, A.W. (2006). Agent-based system architecture for wireless sensor networks, 20th International Conference on Advanced Information Networking and Applications, Vienna, Austria, Vol. 2.
  • [22] IRTF (2015). Software-Defined Networking (SDN): Layers and Architecture Terminology, https://tools.ietf.org/html/rfc7426.
  • [23] ITU (2008). Definitions of Terms Related to Quality of Service, https://www.itu.int/rec/T-REC-E.800-200809-I.
  • [24] Jaworek-Korjakowska, J. and Tadeusiewicz, R. (2013). Assessment of dots and globules in dermoscopic color images as one of the 7-point check list criteria, International Conference on Image Processing, Melbourne, Australia, Vol. 3, pp. 1456–1460.
  • [25] Jaworek-Korjakowska, J. and Tadeusiewicz, R. (2014). Determination of border irregularity in dermoscopic color images of pigmented skin lesions, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, USA, Vol. 2014, pp. 6459–62.
  • [26] KNeighborsClassifier (2021). https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html.
  • [27] Kołodziej, J., Szmajduch, M., Wang, L., Chen, D. and Khan, S. (2013). Genetic-based solutions for independent batch scheduling in data grids, 27th European Conference on Modelling and Simulation, Ålesund, Norway, pp. 504–510.
  • [28] Kreutz, D., Ramos, F.M.V., Veríssimo, P.E., Rothenberg, C.E., Azodolmolky, S. and Uhlig, S. (2015). Software-defined networking: A comprehensive survey, Proceedings of the IEEE 103(1): 14–76.
  • [29] Li, S., Zhang, Y., Wang, Y. and Sun, W. (2019). Utility optimization-based bandwidth allocation for elastic and inelastic services in peer-to-peer networks, International Journal of Applied Mathematics and Computer Science 29(1): 111–123, DOI: 10.2478/amcs-2019-0009.
  • [30] Li, Z., Yuan, R. and Guan, X. (2007). Accurate classification of the internet traffic based on the svm method, IEEE International Conference on Communications, Glasgow, UK.
  • [31] LinearSVC (2021). https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html.
  • [32] Liu, C.-C., Chang, Y., Tseng, C.-W., Yang, Y.-T., Lai, M.-S. and Chou, L.-D. (2018). SVM-based classification mechanism and its application in SDN networks, 10th International Conference on Communication Software and Networks, Chengdu, China.
  • [33] Memeti, S., Pllana, S., Binotto, A., Kołodziej, J. and Brandic, I. (2018). A review of machine learning and meta-heuristic methods for scheduling parallel computing systems, LOPAL’18: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications, Córdoba, Spain, pp. 1–6.
  • [34] Nguyen, T. and Armitage, G. (2008). A survey of techniques for internet traffic classification using machine learning, IEEE Communications Surveys & Tutorials 10(4): 56–76.
  • [35] Nunes, B.A.A., Mendonca, M., Nguyen, X., Obraczka, K. and Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks, IEEE Communications Surveys Tutorials 16(3): 1617–1634.
  • [36] NuSVC (2021). https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html.
  • [37] Ogiela, L., Tadeusiewicz, R. and Ogiela, M. (2006). Cognitive approach to visual data interpretation in medical information and recognition systems, in N. Zheng et al. (Eds), Advances in machine Vision, Image Processing, and Pattern Analysis, Springer, Berlin/Heidelberg, pp. 244–250.
  • [38] Ogiela, M. and Tadeusiewicz, R. (2000). Syntactic pattern recognition for x-ray diagnosis of pancreatic cancer, IEEE Engineering in Medicine and Biology Magazine 19(6): 94–105.
  • [39] Onan, A., Korukoglu, S. and Bulut, H. (2016). A multiobjective weighted voting ensemble classifier based on differential evolution algorithm for text sentiment classification, Expert Systems with Applications 62: 1–16.
  • [40] Pahwa, K. and Agarwal, N. (2019). Stock market analysis using supervised machine learning, 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, Faridabad, India, pp. 197–200.
  • [41] Patri, S.K., Grigoreva, E., Kellerer, W. and Mas Machuca, C. (2019). Rational agent-based decision algorithm for strategic converged network migration planning, IEEE/OSA Journal of Optical Communications and Networking 11(7): 371–382.
  • [42] Pławiak, P., Abdar, M. and Acharya, U. (2019). Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring, Applied Soft Computing 84: 105740.
  • [43] Pławiak, P., Abdar, M., Pławiak, J., Makarenkov, V. and Acharya, U. (2020). DGHNL: A new deep genetic hierarchical network of learners for prediction of credit scoring, Information Sciences 516: 401–418.
  • [44] Perez, J.A., Zarate, V.H. and Cebrera, C. (2006). A network and data link layer QoS model to improve traffic performance, International Conference on Embedded and Ubiquitous Computing.
  • [45] RadiusNeighborsClassifier (2021). https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html.
  • [46] RandomForestClassifier (2021). https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html.
  • [47] Ross, M., Graves, C.A., Campbell, J.W. and Kim, J.H. (2013). Using support vector machines to classify student attentiveness for the development of personalized learning systems, 2013 12th International Conference on Machine Learning and Applications, Miami, USA, Vol. 1, pp. 325–328.
  • [48] Ruiz, D. and Finke, J. (2019). Lyapunov-based anomaly detection in preferential attachment networks, International Journal of Applied Mathematics and Computer Science 29(2): 363–373, DOI: 10.2478/amcs-2019-0027.
  • [49] Sakarkar, G. and Shelke, N.M. (2009). A new classification scheme for autonomous software agent, 2009 International Conference on Intelligent Agent Multi-Agent Systems, Chennai, India, pp. 1–2.
  • [50] Sakarkar, G. and Thakar, V.M. (2009). Autonomous software agent for localization, 2009 International Conference on Intelligent Agent Multi-Agent Systems, Chennai, India, pp. 1–4.
  • [51] Sammut, C. and Webb, I.G. (2010). Encyclopedia of Machine Learning, Springer, Boston.
  • [52] Sasaki, Y. (2007). The truth of the F-measure, https://www.toyota-ti.ac.jp/Lab/Denshi/COIN/people/yutaka.sasaki/F-measure-YS-26Oct07.pdf.
  • [53] Shuang, Z., Qinghe, H. and Dingwei, W. (2007). Application of software agent to e-commerce consumer buying support, 2007 2nd IEEE Conference on Industrial Electronics and Applications, Harbin, China, pp. 2500–2503.
  • [54] Slhoub, K., Carvalho, M. and Nembhard, F. (2019). Evaluation and comparison of agent-oriented methodologies: A software engineering viewpoint, 2019 IEEE International Systems Conference (SysCon), Orlando, USA, pp. 1–8.
  • [55] Stankiewicz, R. and Jajszczyk, A. (2011). A survey of QoE assurance in converged networks, Computer Networks 55(7): 1459–1473.
  • [56] Szaleniec, J., Wiatr, M., Szaleniec, M., Składzień, J., Tomik, J., Oleś, K. and Tadeusiewicz, R. (2013). Artificial neural network modelling of the results of tympanoplasty in chronic suppurative otitis media patients, Computers in Biology and Medicine 43(1): 16–22.
  • [57] Szaleniec, M., Tadeusiewicz, R. and Witko, M. (2008). How to select an optimal neural model of chemical reactivity?, Neurocomputing 72(1–3): 241–256.
  • [58] Tadeusiewicz, R. (2015). Neural networks as a tool for modeling of biological systems, Bio-Algorithms and Med-Systems 11(3): 135–144.
  • [59] Tan, Y. and Zhang, G.-J. (2005). The application of machine learning algorithm in underwriting process, 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, China, Vol. 6, pp. 3523–3527.
  • [60] Tello Leal, E., Chiotti, O. and David Villarreal, P. (2014). Software agents for management dynamic inter-organizational collaborations, IEEE Latin America Transactions 12(2): 330–341.
  • [61] Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences of the United States of America 99: 6567–6572.
  • [62] Wolpert, D.H. (1992). Stacked generalization, Neural Networks 5: 241–259.
  • [63] Xia, W., Wen, Y., Foh, C.H., Niyato, D. and Xie, H. (2015). A survey on software-defined networking, IEEE Communications Surveys Tutorials 17(1): 27–51.
  • [64] Yong, Z., Hongrui, Z., Jing, C. and Binbin, Y. (2014). A weighted voting classifier based on differential evolution, Artificial Intelligence and Data Mining 2014:1–6.
  • [65] Yuan, R., Li, Z., X., G. and Xu, L. (2010). An SVM-based machine learning method for accurate internet traffic classification, Information Systems Frontiers 12: 149–156.
  • [66] Żelasko, D. (2020). Simulation of transmission quality classification in Pay&Require multi-agent managed network by means of machine learning techniques, Simulation Modelling Practice and Theory 103: 102–106.
  • [67] Żelasko, D., Cetnarowicz, K., Wajda, K. and Koźlak, J. (2016). Pay&Require as concept of variable cost routing in dynamically reconfigured networks, Technical Transactions 113(16): 201–214.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3190b42b-c654-4ea9-bf5f-e183b64a18fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.