PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Finite element fatigue analysis of unsupported crane

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented strength and fatigue calculations refer to an unsupported deck crane and its three distinct parts: housing, jib and column. Static loads applied to the structure were due to the crane’s own weight and a maximum working load, corresponding to a maximum lifting capacity at a maximum outreach of the crane. The numerical analysis was aimed at determining the thickness of the skin plating of the column and the number, shape and distribution of stiffeners in the column, housing and jib, ensuring that the crane yields correct strength and fatigue parameters. During the process of designing marine structures, the standard numerical analysis is, in many cases, limited to calculations in the basic strength range. Even when using numerical methods of analysis, complex strength and fatigue calculations are often not performed. The modern numerical analysis chain for marine structures should concentrate not only on strength analysis, but should take a further step, which encompasses fatigue analysis. The article presents a new outlook on design methods, which should be the entry point to the design of marine structures. Based on the acquired number of cycles of fatigue life, it is possible to estimate, with a sufficient degree of accuracy, the practical service life of a structure. To solve the problem, the authors used the finite element analysis software ABAQUS supported by the fe-safe system.
Rocznik
Tom
Strony
127--135
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology Szczecin Piastów 41, 71-065 Szczecin Poland
  • West Pomeranian University of Technology Szczecin Piastów 41, 71-065 Szczecin Poland
Bibliografia
  • 1. K.-J. Bathe, Finite element procedures. 2nd ed. New Jersey, Prentice Hall, 1996.
  • 2. J. Carvill, Mechanical engineer’s data handbook. 8th ed. Oxford, Butterworth–Heinemann, 2000.
  • 3. Dassault Systemes Simulia Corp.: ABAQUS version 6.14: user’s manual. Providence, Dassault Systemes Simulia Corp. 2014.
  • 4. T. Deguchi, M. Mouri, J. Hara, D. Kano, T. Shimoda, F. Inamura, et al., “Fatigue strength improvement for ship structures by Ultrasonic Peening“, J Mar Sci Technol, vol. 17(3), pp. 360–369, 2012.
  • 5. M. Fonte, M. Freitas, B. Li, P. Duarte, L. Reis, “Welding assessment of a damaged crane pedestal of a container ship”, Ciência & Tecnologia dos Materiais, vol. 27(1), pp. 10–14, 2015.
  • 6. H.O. Fuchs, R.I. Stephens, Metal fatigue in engineering. 1st ed. New York, Wiley, 1980.
  • 7. D.S. Han, S.W. Yoo, H.S. Yoon, M.H. Kim, S.H. Kim, J.M. Lee, “Coupling analysis of finite element and finite volume method for the design and construction of FPSO crane”, Automat Constr, vol. 20(4), pp. 368–379, 2011.
  • 8. R.B. Heywood, Designing against fatigue of metals. 1st ed. New York, Reinhold, 1962.
  • 9. S.E. Hirdaris, W. Bai, D. Dessi, A. Ergin, X. Gu, O.A. Hermundstad, et al., “Loads for use in the design of ships and offshore structures”, vol. 78, pp. 131–174, 2014.
  • 10. S.E. Hirdaris, N.J. White, N. Angoshtari, M. Johnson, Y. Lee, N. Bakkers, “Wave loads and flexible fluid–structure interactions: current developments and future directions”, Ships Offshore Structures, vol. 5(4), pp. 307–325, 2010.
  • 11. R.C. Juvinall, Engineering consideration of strees, strain and strength. 1st ed. New York, McGraw–Hill, 1967.
  • 12. M. Kleiber, C. Woźniak, Nonlinear mechanics of structures. 1st ed. Dordrecht, Kluwer, 1991.
  • 13. M.I. Kvittem, T. Moan, “Time domain analysis procedures for fatigue assessment of a semi–submersible wind turbine”, Mar Struct, vol. 40, pp. 38–59, 2015.
  • 14. A.A. Marquez, P. Venturino, J.L. Otegui, “Common root causes in recent failures of cranes”, Eng Fail Anal, 39, pp. 55–64, 2014.
  • 15. H.P. Lieurade, “Fatigue analysis in offshore structures”, in Advances in Fatigue Science and Technology: Proceedings of the NATO Advanced Study Institute on Advances in Fatigue Science and Technology, Branco CM, Rosa LG, Eds. 1988 Apr 4-15; Alvor, Portugal. Dordrecht, KluwerNATO ASI E Series 159, 1989, pp. 585–625.
  • 16. S. Pałkowski, Konstrukcje cięgnowe. 1st ed. Warszawa, WNT, 1994.
  • 17. P.T. Pedersen, “Marine structures: future trends and the role of universities”, Engineering, vol. 1(1), pp. 131–138, 2015.
  • 18. Safe Technology Ltd.: Fe–safe version 6.5: user’s manual. Sheffield, Safe Technology Ltd. 2014. 19.
  • 19. C.G. Soares, Y. Garbatov, “Fatigue reliability of the ship hull girder”, Mar Struct, vol. 9(3–4), pp. 495–516, 1996. 20.
  • 20. C.G. Soares, T. Moan, “Model uncertainty in the long– term distribution of wave–induced bending moments for fatigue design of ship structures”, Mar Struct, vol. 4(4), pp. 295–315, 1991.
  • 21. P. Wirsching, “Fatigue reliability for offshore structures”, J Struct Eng. ASCE, vol. 110(10), pp. 2340–2356, 1984.
  • 22. F. Wu, W. Yao, P. Hu, “Fatigue life prediction analysis of crane structure on the basis of strain signal measure and MSC.Fatigue” in Structural health monitoring and integrity management: Proceedings of the 2nd International Conference of Structural Health Monitoring and Integrity Management (ICSHMIM 2014); 2014 Sep 24–26; Nanjing, China, pp. 309–314, Boca Raton, CRC Press, 2015.
  • 23. [O. Ozguc, “Assessment of Buckling Behaviour on an FPSO Deck Panel”, Polish Maritime Research, vol. (3), pp. 50–58, 2020.
  • 24. J. Łubiński, H. Olszewski, “Hybrid Finite Element Method Development for Offshore Structures. Calculation with the Implementation of Industry Standards”, Polish Maritime Research, vol. 26(4), pp. 90100, 2019.
  • 25. L. Samson, M. Kahsin, “A Method to Determine the Tightening Sequence for Standing Rigging of a Mast”, Polish Maritime Research, vol. 26(4), pp. 47–55, 2019.
  • 26. E. Zahavi, V. Torbilo, Life expectancy of machine parts: fatigue design, 1st ed. Boca Raton, CRC Press, 1996.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31907ea8-f9bd-4739-b41f-6c6f886e7efd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.