PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Canthaxanthin in recent sediments as an indicator of heterocystous cyanobacteria in coastal waters

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mean share of heterocystous cyanobacteria in total chlorophyll-a production in coastal waters, based on cyanobacterial marker carotenoid and chloropigments preserved in recent sediments (0-5 cm, ca 30 years), has been studied in the Gulf of Gdańsk (southern Baltic) and for comparison in the Oslofjord/Drammensfjord (southern Norway). First of all, Baltic cyanobacteria, both from laboratory cultures and field samples, were analysed to select marker heterocysteous cyanobacteria carotenoids for sediments. The pigment relation to diatom percentages of different salinity preferences has been tested, to confirm origin of cyanobacteria. The results indicate that canthaxanthin is the best marker of heterocystous cyanobacteria in the southern Baltic Sea. These filamentous cyanobacteria inflow to the Gulf of Gdańsk from the open sea and their abundance has increased in the last thirty years, in comparison with previous time. In that period they made up ca 4.6% of the total chlorophyll-a production in the Gulf of Gdańsk. The estimate for Oslofjord, at the same assumptions, suggests that heterocystous cyanobacteria occurred there also (up to 5.8% of the total chlorophyll-a production), were of marine origin, but their abundance has decreased during the last thirty years. Such an estimate may be used in environmental modelling and can be applied to other coastal areas, once the marker pigments of the main cyanobacteria species have been identified, and the percentage of total chlorophyll-a produced in a basin, preserved in sediments, has been determined for such area.
Czasopismo
Rocznik
Strony
78--88
Opis fizyczny
Bibliogr. 55 poz., mapa, tab., wykr.
Twórcy
  • Institute of Oceanology PAN, Marine Pollution Laboratory, Sopot, Poland
  • Institute of Oceanology PAN, Marine Pollution Laboratory, Sopot, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Biotechnology Gdynia, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Division of Marine Geology, Gdynia, Poland
  • Institute of Oceanology PAN, Marine Pollution Laboratory, Sopot, Poland
Bibliografia
  • [1] Battarbee, R. W., 1986. The eutrophication of Lough Erne inferred from changes in the diatom assemblages of 210Pb- and 137CSdated sediment cores. Proc. R. Irish Acad. Sect. B 86 B (6), 141-168.
  • [2] Belykh, O. I., Dmitrieva, O. A., Gladkikh, A. S., Sorokovikova, E. G., 2013. Identification of toxigenic cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic Sea). Oceanology 53 (1), 71-79, http://dx.doi.org/10.1134/S0001437013010025.
  • [3] Bianchi, T. S., Dibb, J. E., Findlay, S., 1993. Early diagenesis of plant pigments in Hudson River sediments. Estuar. Coast Shelf S. 36 (6), 517-527, http://dx.doi.org/10.1006/ecss.1993.1031.
  • [4] Bianchi, T. S., Engelhaupt, E., Westman, P., Andrèn, T., Rolf, A., Elmgren, R., 2000. Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol. Oceanogr. 45 (3), 716-726, http://dx.doi.org/10.4319/lo.2000.45.3.0716.
  • [5] Bianchi, T. S., Rolff, C., Widbom, B., Elmgren, R., 2002. Phytoplankton pigments in Baltic Sea seston and sediments: seasonal variability, fluxes and transformations. Estuar. Coast Shelf. S. 55 (3), 369-383, http://dx.doi.org/10.1006/ecss.2001.0911.
  • [6] Bodén, P., 1991. Reproducibility in the random settling method for quantitative diatom analysis. Micropaleontology. 37 (3), 313-319, http://dx.doi.org/10.2307/1485893.
  • [7] Carstensen, J., Klais, R., Cloern, J. E., 2015. Phytoplankton blooms in estuarine and coastal waters: seasonal patterns and key species. Estuar. Coast Shelf S. 162, 98-109, http://dx.doi.org/10.1016/j.ecss.2015.05.005.
  • [8] Chen, Q., Nie, Y., Liu, X., Xu, L., Emslie, S. V., 2015. An 800-year ultraviolet radiation record inferred from sedimentary pigments in the Ross Sea area, East Antarctica. Boreas 44 (4), 693-705, http://dx.doi.org/10.1111/bor.12130.
  • [9] Conley, D. J., Cartensen, J., Aigars, J., Axe, P., Bonsdorff, P., Eremina, T., Haahti, B. M., Humborg, C., Jonsson, P., Kotta, J., Lännegren, C., Larsson, U., Maximov, A., Rodriguez Medina, M., Łysiak-Pastuszak, E., Remeikaitè-Nikienè, N., Walve, J., Wilhelms, S., Zillèn, L., 2011. Hypoxia increasing in the coastal zone of the Baltic Sea. Environ. Sci. Tech. 45 (16), 6777-6783, http://dx.doi.org/10.1021/es201212r.
  • [10] Cook, P. L. M., Jennings, M., Holland, D. P., Beardall, J., Briles, C., Zawadzki, A., Doan, P., Mills, K., Gell, P., 2016. Blooms of cyanobacteria in a temperate Australian lagoon system post and prior to European settlement. Biogeosciences 13 (12), 3677-3686, http://dx.doi.org/10.5194/bg-13-3677-2016.
  • [11] Denys, L., 1991. A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. I. Introduction, ecological code and complete list. Profession. Paper Belgium Geol. Surv. 246, 1-41.
  • [12] Desphande, B. N., Tremblay, R., Pienitz, R., Vincent, W. F., 2014. Sedimentary pigments as indicators of cyanobacterial dynamics in hypereutrophic lake. J. Paleolimnol. 52 (3), 171-184, http://dx.doi.org/10.1007/s10933-014-9785-3.
  • [13] Freiberg, R., Nõmm, M., Tõnno, I., Alliksaar, T., Nõges, T., Kisand, A., 2011. Dynamics of phytoplankton pigments in water and surface sediments of a large shallow lake. Est. J. Earth Sci. 60 (2), 91-101, http://dx.doi.org/10.3176/earth.2011.2.03.
  • [14] Grant, C. S., Louda, J. W., 2010. Microalgal pigment ratios in relation to light intensity: implications for chemotaxonomy. Aquat. Biol. 11, 127-138, http://dx.doi.org/10.3354/ab00298.
  • [15] Hall, R. I., Leavitt, P. R., Smol, J. P., Zirnhelt, N., 1997. Comparison of diatoms, fossil pigments and historical records as measures of lake eutrophication. Freshw. Biol. 38 (2), 401-417, http://dx.doi.org/10.1046/j.1365-2427.1997.00251.x.
  • [16] Hasle, G. R., Syvertsen, E. E., 1996. Marine diatoms. In: Tomas, C.R. (Ed.), Identifying marine diatoms and dinoflagellates. Academic Press, San Diego, 5-385.
  • [17] HELCOM, 2009. Eutrophication in the Baltic Sea, Baltic Sea Environ. Proc. Np 115B, 45-52.
  • [18] Henriksen, P., 2005. Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments-a case study fromBaltic entrance area. Harmful Algae 4 (1), 167-178, http://dx.doi.org/10.1016/j.hal.2004.02.003.
  • [19] Hickman, M., Schweger, C. E., 1991. Oscillaxanthin and myxoxanthophyll in two cores from Lake Wabamun, Alberta, Canada. J. Paleolimnol. 5 (2), 127-137, http://dx.doi.org/10.1007/BF00176874.
  • [20] IMGW — Instytut Meteorologii I Gospodarki Wodnej, Miętus, M., Łysiak-Pastuszak, E., Zalewska, T., Krzymiński, W., 2013. Bałtyk Południowy w 2012 r. Charakterystyka wybranych elementów środowiska. IMGW, PIB, Warszawa, 196 pp.
  • [21] Jeffrey, S. W., Mantoura, R. F. C., Wright, S. W., 1997. Phytoplankton pigments in oceanography. SCOR-UNESCO Publ., Paris, 661 pp.
  • [22] Kahru, M., Elmgren, R., 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11 (13), 3619-3633, http://dx.doi.org/10.5194/bg-11-3619-2014.
  • [23] Karlson, K. M., Kankaanpaa, H., Huttunen, M., Meriluoto, J. A. O., 2005. First observation of microcystin LR in pelagic cyanobacterial blooms in the northern Baltic Sea. Harmful Algae 4 (1), 163-166, http://dx.doi.org/10.1016/j.hal.2004.02.002.
  • [24] Kowalewska, G., Lubecki, L., Szymczak-Żyła, M., Bucholc, K., Filipkowska, A., Gogacz, R., Zamojska, A., 2014. Eutrophication monitoring system near the Sopot beach (southern Baltic). Ocean Coast. Manage. 98, 51-61, http://dx.doi.org/10.1016/j.ocecoaman.2014.06.007.
  • [25] Krajewska, M., Szymczak-Żyła, M., Kowalewska, G., 2017a. Carotenoid determination in recent marine sediments — practical problems during sample preparation and HPLC analysis. Curr. Chem. Lett. 6, 91-104, http://dx.doi.org/10.5267/j.ccl.2017.4.003.
  • [26] Krajewska, M., Szymczak-Żyła, M., Kowalewska, G., 2017b. Algal pigments in Hornsund (Svalbard) sediments as biomarkers of Arctic productivity and environmental conditions. Pol. Polar Res. 38 (4), 423-443, http://dx.doi.org/10.1515/popore-2017-0025.
  • [27] Krammer, K., Lange-Bertalot, H., 1986. Bacillariophyceae. 1. Teil: Naviculaceae. In: Ettl, H, Gerloff, J, Heynig, H, Mollenhauer, D (Eds.), Süsswasser flora von Mitteleuropa, Band 2/1. Gustav Fischer Verlag, Stuttgart, New York, 876 pp.
  • [28] Laamanen, M. J., Forsström, L., Sivonen, K., 2002. Diversity of Aphanizomenon flos-aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Appl. Environ. Microb. 68 (11), 5296-5303, http://dx.doi.org/10.1128/AEM.68.11.5296-5303.2002.
  • [29] Laamanen, M. J., Gugger, M. F., Lehtimäki, J. M., Haukka, K., Sivonen, K., 2001. Diversity of toxic and nontoxic nodularia isolates (cyanobacteria) and filaments from the Baltic Sea. Appl. Environ. Microb. 67 (10), 4638-4647, http://dx.doi.org/10.1128/AEM.67.10.4638-4647.2001.
  • [30] Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. J. Paleolimnol. 9 (2), 109-127, http://dx.doi.org/10.1007/BF00677513.
  • [31] Leavitt, P. R., Hodgson, D. A., 2001. Sedimentary pigments. In: Smol, J. P., Birks, J. B., Last, W. M. (Eds.), Tracking Trends Environmental Changes Using Lake Sediments. Kluwer Academy Publisher, Dordrecht, 295-325.
  • [32] Lehtimäki, J., Moisander, P., Sivonen, K., Kononen, K., 1997. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microb. 63 (5), 1647-1656.
  • [33] Łotocka, M., 1998. Carotenoid pigments in Baltic Sea sediments. Oceanologia 40 (1), 27-38.
  • [34] Majewski, A., 1994. Naturalne warunki środowiskowe Zatoki Gdańskiej i jej obrzeża. In: Majewski, A (Ed.), Zatoka Gdańska. IMGW Wyd., Geologiczne, Warszawa, 10-19.
  • [35] Maksymowska, D., Richard, P., Piekarek-Jankowska, H., Riera, P., 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (Southern Baltic Sea). Estuar. Coast Shelf S. 51 (5), 585-598, http://dx.doi.org/10.1006/ecss.2000.0701.
  • [36] Mazur-Marzec, H., Żeglińska, L., Pliński, M., 2005. The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena. J. Appl. Phycol. 17 (2), 171-179, http://dx.doi.org/10.1007/s10811-005-5767-1.
  • [37] Mazur-Marzec, H., Pliński, M., 2009. Do toxic cyanobacteria blooms pose a threat to the Baltic ecosystem? Oceanologia 51 (3), 293-319, http://dx.doi.org/10.5697/oc.51-3.293.
  • [38] Mazur-Marzec, H., Sutryk, K., Kobos, J., Hebel, A., Hohlfeld, N., Błaszczyk, A., Toruńska, A., Kaczkowska, M. J., Łysiak-Pastuszak, E., Kraśniewski, W., Jasser, I., 2013. Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701 (1), 235-252, http://dx.doi.org/10.1007/s10750-012-1278-7.
  • [39] Nehring, S., 1993. Mortality of dogs associated with a mass development of Nodularia spumigena (cyanophyceae) in a brackish lake at the German North Sea coast. J. Plankton. Res. 15 (7), 867-872, http://dx.doi.org/10.1093/plankt/15.7.867.
  • [40] Paerl, H. W., Valdes, L. M., Pinckney, J. L., Piehler, M. F., Dyble, J., Moisander, P. H., 2003. Phytoplankton photopigments as indicators of estuarine and coastal eutrophication. Biosciences 53 (10), 953-964, http://dx.doi.org/10.1641/0006-3568(2003)053[0953:PPAIOE]2.0.CO;2.
  • [41] Pastuszak, M., Witek, Z., 2012. Discharges of water and nutrients by the Vistula and Oder rivers draining Polish territory. In: Pastuszak, M., Igras, J. (Eds.), Temporal and Spatial Differences in Emission of Nitrogen and Phosphorus from Polish Territory to the Baltic Sea. National Mar Fisher Res/Fertilizer Research Institute (INSOL), Gdynia/Puławy, 311-353.
  • [42] Roy, S., Llewellyn, C. A., Egeland, E. S., Johnsen, G., 2012. Phytoplankton Pigments. Cambridge Univ. Press, Cambridge, 845 pp.
  • [43] Sahindokuyucu Kocasari, F., Gulle, I., Kocasari, S., Pekkaya, S., Mor, F., 2015. The occurrence and levels of cyanotoxin nodularin from Nodularia spumigena in the alkaline and salty Lake Burdur, Turkey. J. Limnol. 74 (3), 530-536, http://dx.doi.org/10.4081/jlimnol.2015.1097.
  • [44] Schlüter, L., Møhlenberg, F., Havskum, H., Larsen, S., 2000. The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol. Prog. Ser. 192, 49-63.
  • [45] Schlüter, L., Garde, K., Kaas, H., 2004. Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4-keto-myxoxanthophyll-like pigment in the Baltic Sea. Mar. Ecol. Prog. Ser. 275, 69-78, http://dx.doi.org/10.3354/meps275069.
  • [46] Schlüter, L., Lutnæs, B. F., Liaaen-Jensen, S., Garde, K., Kaas, H., Jameson, I., Blackburn, S., 2008. Correlation of content of hepatotoxin nodularin and glycosidic carotenoids, 4-ketomyxol-2ʹ-fucoside and novel 1ʹ-O-methyl-4-ketomyxol-2ʹ-fucoside, in 20 strains of the cyanobacterium Nodularia spumigena. Biochem. Syst. Ecol. 36 (10), 749-757, http://dx.doi.org/10.1016/j.bse.2008.08.002.
  • [47] Sivonen, K., Kononen, K., Carmichael, W. W., Rinehart, K., Kivitanta, J., Niemela, S.I., 1989. Occurrence of the hepato-toxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl. Environ. Microb. 55 (8), 1990-1995.
  • [48] Stal, L. J., Albertano, P., Bergman, B., von Bröckel, K., Gallon, J. R., Hayes, P. K., Sivonen, K., Walsby, A. E., 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea-responses to a changing environment. Cont. Shelf Res. 23 (17-19), 1695-1714, http://dx.doi.org/10.1016/j.csr.2003.06.001.
  • [49] Stoń, J., Kosakowska, A., Łotocka, M., 2002. Pigment composition in relations to phytoplankton community structure and nutrient content in the Baltic Sea. Oceanologia 44 (4), 419-437.
  • [50] Szymczak-Żyła, M., Kowalewska, G., 2007. Chloropigmnents-a in the Gulf of Gdańsk (Baltic Sea) as markers of the state of this environment. Mar. Pollut. Bull. 55 (10-12), 512-528, http://dx.doi.org/10.1016/j.marpolbul.2007.09.013.
  • [51] Szymczak-Żyła, M., Krajewska, M., Winogradow, A., Zaborska, A., Breedveld, G. D., Kowalewska, G., 2017. Tracking trends in eutrophication based on pigments in recent coastal sediments. Oceanologia 59 (1), 1-17, http://dx.doi.org/10.1016/j.oceano.2016.08.003.
  • [52] Tse, T. J., Doig, L. E., Leavitt, P. R., Quinones-Rivera, Z. J., Codling, G., Lucas, B. T., Liber, K., Giesy, J. P., Wheater, H., Jones, P. D., 2015. Long-term spatial trends in sedimentary algal pigments in a narrow river-valley reservoir, Lake Diefenbaker, Canada. J. Great Lakes Res. 41 (2), 56-66, http://dx.doi.org/10.1016/j.jglr.2015.08.002.
  • [53] Watts, C. D., Maxwell, J. R., 1977. Carotenoid diagenesis in a marine sediment. Geochim. Cosmochim. Acta 41 (4), 493-497, http://dx.doi.org/10.1016/0016-7037(77)90287-3.
  • [54] Wojtasiewicz, B., Stoń-Egiert, J., 2016. Bio-optical characterization of selected cyanobacteria strains present in marine and freshwater ecosystem. J. Appl. Phycol. 28 (4), 2299-2314, http://dx.doi.org/10.1007/s10811-015-0774-3.
  • [55] Ypma, J. E., Throndsen, J., 1996. Seasonal dynamics of bacteria, autotrophic picoplankton and small nanoplankton in the inner Oslofjord and the Skagerrak in 1993. Sarsia 81 (1), 57-66, http://dx.doi.org/10.1080/00364827.1996.10413611.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-318ff736-d9b4-4e3e-9d8d-812b6760d2dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.