PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variation of constant formulas for fractional difference equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we establish variation of constant formulas for both Caputo and Riemann-Liouville fractional difference equations. The main technique is the Z-transform. As an application, we prove a lower bound on the separation between two different solutions of a class of nonlinear scalar fractional difference equations.
Rocznik
Strony
617--633
Opis fizyczny
Bibliogr. 26 poz., wzory
Twórcy
autor
  • Department of Mathematics, Le Quy Don Technical University, 236 Hoang Quoc Viet, Hanoi, Vietnam
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
  • Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100 Gliwice, Poland
  • University of Silesia, Faculty of Mathematics, Physics and Chemistry, Institute of Mathematics, Bankowa 14, 40-007 Katowice
autor
  • Technische Universität Dresden, Faculty of Mathematics, Center for Dynamics, Zellescher Weg 12-14, 01069 Dresden, Germany
Bibliografia
  • [1] T. Abdeljawad: On Riemann and Caputo fractional differences, Comput. Math. Appl., 62(3) (2011), 1602-1611.
  • [2] P. T. Anh, A. Babiarz, A. Czornik, M. Niezabitowski, and S. Siegmund: Asymptotic properties of discrete linear fractional equations, Submitted to the Bulletin of the Polish Academy of Science.
  • [3] F. M. Atici and P. W. Eloe: Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137(3) (2009), 981-989.
  • [4] J. Čermák, T. Kisela, and L. Nechvátal: Stability regions for linear fractional differential systems and their discretizations, Appl. Math. Comput., 219(12) (2013), 7012-7022.
  • [5] J. Čermák, I. Győri, and L. Nechvátal: On explicit stability conditions for a linear fractional difference system, Fract. Calc. Appl. Anal., 18(3) (2015), 651-672.
  • [6] F. Chen, X. Luo, and Y. Zhou: Existence results for nonlinear fractional difference equation, Adv. Difference Equ. (2011), Art. ID 713201, 12 pp.
  • [7] N. D. Cong, T. S. Doan, and H. T. Tuan: On fractional Lyapunov exponent for solutions of linear fractional differential equations, Fractional Calculus and Applied Analysis, 17 (2014), 285-306.
  • [8] N. D. Cong, T. S. Doan, S. Siegmund, and H. T. Tuan: On stable manifolds for fractional differential equations in high-dimensional spaces, Nonlinear Dyn., 86(3) (2016), 1885-1894.
  • [9] S. Elaydi and S. Murakami: Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type, J. Differ. Equations Appl., 2(4) (1996), 401-410.
  • [10] S. Elayadi: An Introduction to Difference Equations, Springer, New York, 2005.
  • [11] R. A. C. Ferreira: A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc., 140(5) (2012), 1605-1612.
  • [12] R. L. Graham, D. E. Kunth, and O. Patashnik: Concrete mathematics. A foundation for computer science. Second edition. Addison-Wesley Publishing Company, 1994.
  • [13] E. Girejko, E. Pawłuszewicz, and M. Wyrwas: The Z-transform method for sequential fractional difference operators, In: Theoretical Developments and Applications of Non-Integer Order Systems, Springer, Cham, 2016, pp. 57-67.
  • [14] L. Kexue and P. Jigen: Laplace transform and fractional differentia equations, Applied Mathematics Letters, 24 (2011), 2019-2023.
  • [15] T. Kisela: An analysis of the stability boundary for a linear fractional difference system, Math. Bohem., 140 (2015), 195-203.
  • [16] S. G. Krantz: Handbook of complex variables, Birkhäuser Boston, Inc., Boston, MA, 1999.
  • [17] D. Mozyrska and E. Pawluszkiewicz: Local controllability of nonlinear discrete-time fractional order systems, Bull. Pol. Acad.: Tech., 61(1) (2013), 251-256.
  • [18] D. Mozyrska and M. Wyrwas: Solutions of fractional linear difference systems with Caputo-type operator via transform method. ICFDA (2014), p. 6.
  • [19] D. Mozyrska and M. Wyrwas, Solutions of fractional linear difference systems with Riemann-Liouville–type operator via transform method, ICFDA (2014), p. 6.
  • [20] D. Mozyrska and M. Wyrwas: Fractional linear equations with discrete operators of positive order, In: Latawiec, K. J., Łukaniszyn, M., Stanisławski, R. (eds.), Advances in the Theory and Applications of Noninteger Order Systems, Lecture Notes in Electrical Engineering, Vol. 320 (2015), 47-58.
  • [21] D. Mozyrska and M. Wyrwas: The Z-transform method and delta-type fractional difference operators, Discrete Dyn. Natl. Soc. (2015), article ID 852734.
  • [22] P. Ostalczyk, Discrete fractional calculus. Applications in control and image processing, Series in Computer Vision, 4. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2016.
  • [23] E. Pawluszewicz: Constrained controllability of fractional h-difference fractional control systems with Caputo type operator, Discrete Dyn. Natl. Soc. (2015).
  • [24] E. Pawluszewicz: Remarks on Mittag-Leffler Discrete Function and Putzer Algorithmfor Fractional h-Difference Linear Equations, Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, Vol. 407 (2017), 89-99.
  • [25] A. C. Peterson and C. Goodrich, Discrete fractional calculus, Springer, Cham, 2015.
  • [26] R. Abu-Saris and Q. Al-Mdallal: On the asymptotic stability of linear system of fractional-order difference equations, Fract. Calc. Appl. Anal., 16(3) (2013), 613-629.
Uwagi
EN
1. The research of the second and third authors was funded by the National Science Centre in Poland granted according to decisions DEC-2015/19/D/ST7/03679 and DEC-2017/25/B/ST7/02888, respectively. The research of the fourth author was supported by Polish National Agency for Academic Exchange according to the decision PPN/BEK/2018/1/00312/DEC/1. The research of the last author was partially supported by an Alexander von Humboldt Polish Honorary Research Fellowship.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-318f0699-cf12-4954-b2fc-5cb1af9a9158
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.