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Damage detection in a structure using the vibration signature is a quiet smart method
for condition monitoring of the structure. In this problem, the Recurrent Neural Networks
(RNNs) based method has been implemented for damage detection in the moving load pro-
blem as an inverse method. A multi-cracked simply supported beam under a traversing load
has been considered for the present problem. The localization and severities of the super-
vised cracks on the structure are determined using the adapted Jordan’s Recurrent Neural
Networks (JRNNs) approach. The mechanism of Levenberg-Marquardt’s back propagation
algorithm has been implemented to train the networks. To check the adoptability of the
proposed JRNNs method, numerical analyses along with laboratory test verifications have
been conducted and found to be well emerged.
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1. Introduction

Cracks are induced during the service period and mechanized progression of structures. So, the
early detection of a crack is essential in order to sustain the stability and dynamic behavior of
structures. In the current time, applications of artificial neural networks have been widely used
for fault analysis in dynamic structure identification problems. So fault detection by using a
vibration signature is extremely smart for supervising bridge structures because it presents the
prospect of electronic recording along with digital processing and information creation. Many
researchers have been working in the area of crack detection using various techniques of the
forward as well as reverse manner.

Krawczuk and Ostachowicz (1995) developed a discrete and finite element model for a com-
posite structure with the presence of an edge crack. They discussed various factors like depth
of the crack, volume fraction of fibers and orientation of angles in the composite structure and
their significance on the response of the beam. Dems and Mréz (2001) devoted their work on
damage identification procedures by implementing the mechanism of factors associated with the
natural frequency of the structure. Owolabi et al. (2003) formulated a damage detection tech-
nique in structures using changes in natural frequencies and amplitudes of frequency response
functions. Seker et al. (2003) have studied the ability of Elman’s recurrent neural network to
diagnose faults and conditions of a nuclear power plant and rotating machine structures. Malhi
and Gao (2004) approached recurrent neural networks to predict the condition by monitoring
of machines. Using the modal properties, a neural network method was proposed for damage
identification in a bridge structure by Lee et al. (2005) by considering errors occurring in baseline
finite element models.
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Utilizing the concepts of neural networks for pattern recognition of the vibration signature,
Yeung and Smith (2005) developed a damage detection procedure for bridge-like structures.
They simulated them with a real damage scenario and evaluated the responses of the structure
under moving traffic conditions. Bu et al. (2006) proposed an inventive method to calculate the
bridge state from the response of a traversing vehicle. Yan et al. (2007) presented different types
of structural damage detection methods based on using vibration signatures. Mehrjoo et al.
(2008) presented a method to determine damage intensities of joints in a truss bridge structure
using an artificial neural network based on the back propagation rule.

Hu and Balasubramaniam (2008) analyzed some real case studies on the application of
Elman’s recurrent neural network. Ekici et al. (2009) determined the fault location happening in
a transmission line using Elman’s recurrent network (ERN). Prakrashi et al. (2010) investigated
a damage evolution method by experimental monitoring of vehicle bridge interaction dynamics.

Sayyad and Kumar (2011) carried out analytical and experimental methods for crack detec-
tion in a simple supported beam with a single crack by analyzing the concepts of measurement
of natural frequencies. They used this method as an inverse problem to determine the crack
locations and size for different types of the structure.

Gonzélez-Pérez and Valdés-Gonzalez (2011) presented a structural damage identification
procedure in a bridge structure under vehicular load using the artificial neural network method.
Li and Law (2012) presented a substructure crack detection method from the dynamic response
reconstruction technique of a passing vehicle. Li et al. (2013) conducted a numerical study along
with experimental investigation for fault diagnosis in a bridge structure under a moving load
using the dynamic reconstruction method in the wavelet domain. Coban (2013) proposed a
novel context layer locally recurrent neural network (CLLRNN) method for the dynamic system
identification problem using the back propagation algorithm with an adaptive learning rate.

Bandara et al. (2014) developed an artificial neural network based technique for damage
identification in a structure using the frequency response function. Oshima et al. (2014) deve-
loped an indirect approach to study the state of a bridge based on the mode shape analysis by
the responses of travelling vehicular loads. Nandakumar and Shankar (2014) presented a da-
mage detection system for a double cracked beam using the two crack transfer matrix method.
Ettefagh et al. (2014) investigated a crack detection procedure for structures based on modal
updating and the model reduction method.

Lee and Wu (2014) found out natural frequencies of a cracked beam using the local adaptive
differential quadrature method. In the later part, they employed Newton-Raphson’s iteration
method for fault isolation in multiple cracked structures. Kong et al. (2015) carried out a com-
putational study to explore the possibilities of damage in a bridge by the vehicle transmissibility
of the vehicle bridge couple system. Vosoughi (2015) investigated a novel technique to identify
cracks in beams by hybridizing genetic algorithms (GAs) and particle swarm optimization (PSO)
methods. He and Zhu (2016) explored a closed form solution to analyze the dynamic response
of a cracked simple supported beam subjected to a moving load. Further, they extended this
problem for damage detection in a beam based on the response of the induced moving load.

Jena and Parhi (2017a,b,c), Jena et al. (2015, 2017), Parhi and Jena (2017) carried out
theoretical analyses along with the FEA and experimental verifications methods to determine
responses of a damaged structure with different end conditions under transit loading conditions.
They also investigated the consequences of different parameters (moving speed, magnitude of
the moving mass, crack positions and crack severities) and their influences on the responses of
the structure. Mousavi and Gandomi (2018) developed a novel damage detection procedure by
directly using the input and output parameters of the forced vibrating structure.

As far the literature is concerned, to the best of the author’s knowledge, damage detection in
structural dynamics problems using the concepts of RNNs is little. The proposed analogy applies
the concepts of Jordan’s Recurrent Neural Networks (JRNNs) with the L-M back propagation
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algorithm as a reverse problem to detect and localize some damage parts in the structure under
a moving mass. The present crack detection approach has been carried out in a supervised mode

by considering a simply supported structure under the transiting mass. The severities of the
cracks are also determined.

2. Problem formulation

In the present investigation, a simply supported beam (Fig. 1) with multiple cracks subjected
to a traversing load has been considered for the analysis. The responses of the simply supported
beam subjected to the traversing load are found out both theoretically and experimentally. The

theoretical problem has been solved by approaching the concepts of Euler-Bernoulli’s assump-
tions.
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Fig. 1. (a) Schematic presentation of a cracked simply supported beam under a traversing mass.
(b) Schematic presentation of the cross-section of the cracked simply supported beam

The equation of motion of a structure subjected to a traversing load is given by

oty 0%y
where F(z,t) = P(t)0(x —~)+r(x,t) — interactive force due to the traversing mass, and r(x,t) —
universal loading conditions (zero in the present investigation), § — Dirac delta function, v = vt

— position of the traversing mass at any moment of time ¢. P(t) is the applied force due to the
moving mass

0 0 \2
P(t) :MQ—M(&‘HJa) y(v,1)

where 0%y(v,t)/0t> — inertial acceleration, v29%y(y,t)/0y* — centrifugal acceleration,
200%y(v,t)/(9y0t) — Coriolis acceleration, H — thickness of the beam, B — width of the beam,
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M — traversing mass, v — traversing speed, m — beam mass per unit length, g — gravitational
constant, L — length of the beam, Ly, Lo, L3 — locations of the first, second and third crack from
the left supported end of the cracked simply supported structure, respectively, dy, ds, d3 — depth
of the first, second and third crack, respectively.

The general elucidation of equation (2.1) has been written as in series from, i.e.

y(a.t) = i on(2)Ta(t) (2.2)

where ¢, (x) — eigen function of the structure without allowing the moving mass, T, (¢) — function
of amplitude to be determined, n — number modes of vibrations.
For the evaluation of ¢(x), equation (2.2) has been expressed as

P (z) — Anpn(z) = 0 (2.3)
where
2 2
4 Wn Whn,
— gAY Y
A = PAGT =g

After some rearrangements and simplifications, the final solution to equation (2.2) has been
expressed below

BINTL0) + ()~ (55)[o = 3 (5 +va) el on() =0 (24
n =1

Equation (2.4), which is a fourth order differential equation, has been earlier solved by Jena and
Parhi (2017b) by using the fourth order Runge-Kutta method. By solving equation (2.4), the
responses of the structure are determined. To corroborate the proposed computational approach,
an experiment has also been conducted in the laboratory.

The laboratory test model is shown in Fig. 2. The same laboratory test procedures are
carried out here as those of Jena and Parhi (2017b) who previously found out the responses
of the structure. For the above theoretical and experimental works, numerical examples are
formulated to predict the subsistence and positions of cracks in the structure as in the forward
manner.

Fig. 2. Laboratory test model for a simply supported structure
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3. Numerical formulation

Beam type — rectangular (mild steel specimen)

Beam size — 140 cmx 4.5 cmx 0.5 cm

Moving speed — 4.18 m/s and 5.13m/s

Moving mass — 1.9kg and 1.15 kg

Crack locations {L;, Ly, L3} = {51,72.1,89.2} cm and

{Ll, LQ, Lg} = {637, 849, 1061} cm

e Relative crack depth {ag, as, ag} = {0.18,0.32,0.43} and {1, a9, as} = {0.26,0.45,0.54},
where o; = d;/h (i =1,2,3)

The forward problem analyses are done both theoretically and experimentally. The dynamic
responses of the cracked beam structure due to the movement of the traversing mass are also
determined. The deflections of the structure with respect to the positions of the traversing mass
are determined and shown in Figs. 3a and 3b. From the illustrations in Figs. 3a and 3b, there has
been observed that, to some extent, there are sudden intensifications in the dynamic deflections
or amplitudes.
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Fig. 3. Displacement vs. position of the moving mass for M = 1.9kg: (a) v = 4.18 m/s,
{041, 9o, 043} = {0.18, 0.32, 0.43}, {Ll, LQ, L3} = {51, 72.1, 89.2}; (b) v=25.13 III/S7
{Oél, a2, 043} = {026, 045, 054}, {Ll, LQ, Ld} = {637, 849, 1061}

From this kind of behavior in the beam deflections, it is proved that there are some possible
existences of cracks on the structure. The positions of the cracks are found out from the delibe-
rated dynamic responses of the structures, i.e. sudden amplifications in dynamic deflections to
the corresponding positions of the traversing mass. The severities of the cracks are observed by
the experimental study.

4. Application of Jordan’s Recurrent Neural Networks (JRNNSs) for crack
detection in the structure

In the present problem, knowledge based JRNNs have been proposed for crack detection in the
moving-load dynamic problem. The key advantage of networks are the feedback links which use
information later. The adapted architecture of the proposed JRNNs model is shown in Fig. 4.
In JRNNs types of the network structure, there is a feedback connection from the output layer
to the hidden layer which is known as the context layer. Due to the adaption of the context
layer, the information can be gathered and reused later. In the present analogy, the architectural
structure of the JRNNs model is slightly modified. The present JRRNs model has one input and
output, two context layers and three hidden layers. Apart from the input and hidden layers,
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self recurrent connections are also provided in the context and output units. Due to the self
recurrence and feedback links, dynamic memory has been introduced to the networks unit which
behaves as additional memory units. The feedback and self recurrent links have one time delay
unit (Z~1). The numbers of neurons in the context and output layers are the same because
the exact information can be copied due to the feedback links. The neurons from the output
layer provide information to the context layer-1 through feedback connections and forward these
output values to the first hidden layer. Again the context layer-1 supplies information to the
context layer-2 and again the output of the context layer-2 is feed forwarded to the first hidden
layer. So, due to the feedback links (context layers 1 and 2) and self recurrence, dynamic memory
is provided to the network structure. The Levenberg-Marquardt (Yu and Wilamowski, 2011) back
propagation algorithm is implemented here to train the proposed JRNNs structure. Throughout
the training procedures of the proposed network structure, the training patterns are fed forward
the following components to encompass the networks, and the network is operated accordingly.
In Fig. 4, the architectural model of the proposed JRNNs is shown. The layer-1 (input layer)
of the proposed model contains the responses of the structure (relative deflection) along with
different moving parameters at various damage and undamaged conditions of the structure.
The training parameters are described as follows:

e { — total travelling time of the traversing mass to cross the beam

e RD (Relative Deflection) — deflection of the cracked beam to the uncracked beam at a
particular instant of time with the same moving speed and mass

e RD-1 —relative deflections of the beam at time ¢/8, RD-2 — at time t/4, RD-3 — at time 3¢/8,
RD-4 — at time ¢/2, RD-5 — at time 5¢/8, RD-6 — at time 3t/4

e Wy = RD-1, Wy = RD-2, W3 = RD-3, W, = RD-4, W5 = RD-5, Wg = RD-6

e Wy — length of the beam L

e W5 — speed of the moving mass v

e Wy — magnitude of the moving mass M

e 1 — first crack location L, @9 — relative first crack depth «y

e 3 — second crack location Lg, ¢4 — relative second crack depth as

e 5 — third crack location L3, ¢g — relative third crack depth ag

e i =1,2,...,N, N is the total number of input nodes

ey =1y =1,2... R, R is the total number of nodes in the context layer-1 and layer-2
(constant)

e k=1,2,...,0, O is the total number of nodes in the output

e j1=jo=7j3=12,...,5, 5 is the total number of neurons or nodes in each hidden layer,

i.e. the first, second and third hidden layers (constant for all the nodes)

e (3 is the self-recurrent value for each node in the output and context layers that varies from
Oto1l

e Z~!is the unit delay

e U;_g — values of the context units in the context layer

e ., and @f,]l are the output values of the nodes of the context layer-1 at the time index ¢
and ¢t — 1, respectively

o o, and ¢ly! are the output values of the nodes of the context layer-2 at the time index ¢
and ¢ — 1, respectively

° gpg» is the output values of the hidden node j at the time index ¢

e ol and @2‘1 are the output values of the nodes of the output layer at the time index ¢
and ¢t — 1, respectively

e ¢ — 1 is the time index that is deferred by one-time step due to the feedback connections,

which is represented by Z~! in the network architecture

w is the weight of connection.
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Fig. 4. Adapted architecture of the JRNNs model

By analyzing the network structure (Fig. 4), the mathematical equations for the proposed
structure are developed as follows

Pl =t 4+ Belt! ohy =l + Boly" (4.1)

The net input to the first hidden layer of the network model is given by

N R R
<P§‘1 = Z waz‘,ﬂ + Z <P£1wr1,j1 + Z <P£2wr2,j1 (4.2)

i=1 r=1 r=1
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The net input to the first hidden layer of the network model is given by

S

@32 = Z @31%‘1,]‘2 (4.3)
j1=1

The net input to the third hidden layer or the network model is given by

S

Pls = ¢ =netj = > phwja i3 ol = f(net?) (4.4)
j2=1

The net output of the network model is given by

S

netf, = Y @hywis s + Bl o = g(net},) (4.5)
j3=1

The activation functions symbols used in the hidden and output layers are f(-) and g(-), respecti-
vely. The activation function implemented for the hidden and context layers is “tan-sigmoid” whi-
le that in the output layer is “purelin” function. The approximate error function e of the output
nodes is optimized by implementing the efficient weight factors relation, i.e., w™** = w4+ Aw,
where ( is the learning rate which is a variable and lies between 0 to 1. The sum square er-
ror function is exemplified to assess the training procedures. The Levenberg-Marquardt (L-M)
back propagation algorithm (Yu and Wilamowski, 2011) is implemented to the proposed ne-
twork to estimate the crack locations and depth. The L-M back propagation algorithm is fast
and having steady convergence. This algorithm coalesces the minimization of two algorithms
(steepest descent and Gauss-Newton methods). This approach adopts the rapidity of perfection
of the Gauss-Newton method and stability of the steepest descent method. This algorithm ac-
complishes an interactive training progression between the two algorithms (steepest descent and
Gauss-Newton methods).

The equation of the L-M back propagation mechanism (Yu and Wilamowski, 2011) is given
by

Wiyt = wi, — (Jg Jg + ED) ey, (4.6)

where J is the Jacobian matrix which has been determined from the Gauss-Newton approach.
I is the identity matrix. £ is the combination coefficient that if the value of £ estimates to zero,
then equation (4.6) will perform like the method of Gauss-Newton. If £ is quite large, then it will
work as the steepest descent method. £ = 1/v, v is the step size or training constant, e — error
vector

€ = Pdesired — Pactual

where ¢ joqireq 18 the required output vector, ¢ ,.1.q 1S the actual output vector

1
= function = 2 4.7
e = error function = Z Z e (4.7)

all training all
patterns  outputs
The training procedures are carried out using the sum square error function. As per the error
function rule, if the error value is less than the previous error, the quadratic estimation on the
sum error is executing, and the value of & should be decreased to minimize the significance of
the gradient descent section. But, if the error value is greater than the previous error, then it is
required to enhance the value of &.
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To train the proposed network with the adopted algorithm, 750 numbers of patterns are
generated in this analogy for the training process. The patterns are generated by considering
different parameters for the moving load dynamic problem. Out of 750 patterns, 650 patterns are
selected for training procedures while the remaining 100 patterns are for the testing process. The
examples of some patterns are represented in Table 1. The patterns are generated for cracked
as well as uncracked beams under the moving mass. The generations of patterns are also aimed
at for the beam having single and multiple cracks. During the training process, the numbers of
nodes in the input, each for the context, hidden and output layers are 9, 6, 20 and 6, respectively.
The selection of the neurons in each hidden layer are favored by the iteration process during
the training of the network and found to be 20 as suitable. Implementing the proposed L-M
algorithm, the entire training procedures are carried out.

Table 1. Training patterns for the JRNNs structure

Input parameters Output parameters
RD-1|RD-2|RD-3|RD-4|RD-5|RD-6] L | v [M L[ Ly | L3 [ a1 [ az | a3
1 [1.16 ] 1.09 | 1.1 | 113 ] 1.17 [190]5.8|1.5]25] 45 | 60 |0.15] 0.3 |0.45

1 1 1.09 | 1.24 | 1.51 | 1.82 |160| 5 [2.5|50| 65 | 90 |0.25]0.35|0.45
1 1.15 | 1.32 | 1.26 | 1.25 | 1.51 {130(6.3|2.3|40| 50 | 60 | 0.4 | 0.4 | 0.4
1 1 1 1.12 | 1.13 | 1.44 |180|5.5|3.5|77|105]|135]0.35]0.42|0.27
1 1 1 1.16 | 1.42 | 1.68 |120|5.7|2.2|50| 70 | 0 |0.43]0.37| O
1 1 1 1 1.15 | 1.27 |17014.912.3|85| 0 | 0 [0.34| O 0
1 1 1 1 1 1 (19016 |40 0] 0| 0 0 0

5. Results and discussions

A noble fault detection method using the concepts of RNNs approach has been carried out in the
present study. The formulation of the present problem has been done in a supervised manner.
To corroborate the above said technology (JRNNs), a small problem has been exemplified.
The numerical problem which has been considered for theoretical and experimental procedures,
has also been considered for the validity of the proposed JRNNs method. Detailed numerical
and experimental analyses of the present investigation have been elaborated in the problem
formulation part. The existence, location and quantifications of cracks have also been carried
out as in the forward problem. The existence and locations of cracks have been obtained from
the measured dynamic responses of the structure (Figs. 3a and 3b).

A modified architecture of the JRNNs with the implementation of L-M back propagation has
been designed for this investigation. The equations have also been developed for the proposed
model. 750 numbers of patterns have been introduced for the training and testing procedures
of the JRNNs model. The patterns have been generated for structures having null, single and
multiple cracks. The detailed of the patterns are explained in Table 1. In Table 1, the output
parameters L1 = Ly = L3 = 0 and a1 = as = ag = 0 symbolize that there is no crack in the
structure. Similarly, Ls = a3 = 0 symbolize the presence of single cracks, Ly = L3 = 0 and
as = a3 = 0 indicate the presence of double cracks, and the rest of these triple cracks. The
problem is designed to detect and localize some damage parts of the structure up to the presen-
ce of three cracks. Appropriate cares are taken during the training procedures of the networks.
The sum square error method has been employed to check the error values of the output. 1000
numbers of iterations have been carried out for this problem. The results obtained from each
analysis (experimental and JRNNs) have been compared with the numerical results and repre-
sented in Tables 2 and 3. For crack locations, the results obtained from JRNNs and experiments
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differ in errors nearly by about 1.1% and 0.5%, respectively, with those of numerical simulation.
For relative crack depth these are about 4.85 and 2.27, respectively, which are seemed to be con-
vergent. The graphs for the number of iterations and percentage error values are represented in
Fig. 5a (crack locations) and Fig. 5b (relative crack depth). This proposed technique can identify
the possible locations of cracks and find out severities of cracks to the structure subjected to a
transiting mass.

Table 2. Comparison of the results for different crack locations

Numerical Experimental JRNNs
Ly | Ly | Ls Ly | Ly | Ls Ly | Ly | Ls
51 | 72.1 89.2 50.73 | 71.83 | 88.74 | 50.41 | 71.34 88.52
63.7 | 84.9 106.1 63.29 | 84.62 | 105.81 | 62.94 | 84.17 | 105.013
Average percentage of error | 0.64% | 0.36% | 0.41% | 1.16% | 1.04% | 1.03%
Total percentage of error 0.47% 1.076%

Table 3. Comparison of the results for various relative crack depth

Numerical Experimental JRNNs
aq ‘ a9 ‘ Qs aq ‘ a9 ‘ Qs (05} ‘ a9 ‘ Qs
0.18 | 0.32 0.43 0.176 0.313 0.421 0.171 0.303 0.411
0.26 | 0.45 0.54 0.253 0.439 0.529 0.248 0.427 0.515
Average percentage of error | 2.44% | 2.31% | 2.065% | 4.81% | 5.21% | 4.524%
Total percentage of error 2.261% 4.846%
(a) (b)
1.9 ; ; : : : : ° 6.0 : : : : : : :
% 1.8 ! — JRNNs for crack locations L % \\ ‘ — JRNNS for relative crack depth
> >
517 \\ 5 55 N
z AN z o
£15 g \\
g ~\ S a5 N
5} T~ 5}
A N A
1.3 \ N\
4.0 AN
1.2 \\ — |
1'10 100 200 300 400 500 600 700 800 900 1000 3'50 100 200 300 400 500 600 700 800 900 1000
Number of iterations Number of iterations

Fig. 5. Graph for iterations vs. percentage error of JRNNs for: (a) crack locations,
(b) relative crack depth

6. Conclusions

The response analysis along with the fault detection of a cracked simply supported beam sub-
jected to a transiting mass is carried out in the present study. The analytical studies along with
laboratory tests are considered as a forward problem and the modified JRNNs with L-M back
propagation algorithm as a reverse problem. The entire studies are conducted in a supervised
manner. The positions and severities of cracks are determined both by an experiment and the
proposed JRNNs methods, and then compared with the numerical values. The results achieved



Structural damage detection in moving load problem...

675

from the JRNNs are quite convergent and acceptable. So, this method can be applicable to the
structural health monitoring problem in the era of structural dynamics.
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