PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

New possibilities of polarization-sensitive optical coherence tomography using geometric phase approach for diagnostics of thin surface (subsurface) biological layers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on presenting the new original results and highlighting of possibilities of geometric phase using in low-coherence polarization-sensitive tomography tasks for noninvasive diagnostics of surface (subsurface) layers of transparent (translucent) biological media (samples and tissues). Determination of the object fields’ geometric phase in the modified Mach–Zehnder interferometer allows one to reproduce the geometric structure (optical axis/collagen orientation) of birefringent biological medium. Polarization-interference noninvasive approach of the collagen orientation structure diagnostics of thin nanosized surface tissue layers is proposed at the first time. It is shown, that taking into account the information about top (surface) layer structure can significantly improve the accuracy of deeper (subsurface) layers parameters estimation. The proposed solution is a unique feature that is not accessible in classical polarization-sensitive techniques of information recovery on tissue structure.
Czasopismo
Rocznik
Strony
303--316
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Research Institute of Zhejiang University, Taizhou City, Zhejiang Province, 318000 China
  • Chernivtsi National University, 2 Kotsyubinsky St., Chernivtsi 58012, Ukraine
  • Research Institute of Zhejiang University, Taizhou City, Zhejiang Province, 318000 China
  • Chernivtsi National University, 2 Kotsyubinsky St., Chernivtsi 58012, Ukraine
  • Chernivtsi National University, 2 Kotsyubinsky St., Chernivtsi 58012, Ukraine
Bibliografia
  • [1] DREXLER W., FUJIMOTO J.G. [Eds.], Optical Coherence Tomography, Springer, Cham 2015: 2571. https://doi.org/10.1007/978-3-319-06419-2
  • [2] EVERETT M., MAGAZZENI S., SCHMOLL T., KEMPE M., Optical coherence tomography: From technology to applications in ophthalmology, Translational Biophotonics 3(1), 2021: e202000012. https://doi.org/10.1002/tbio.202000012
  • [3] PIRCHER M., HITZENBERGER C.K., SCHMIDT-ERFURTH U., Polarization sensitive optical coherence tomography in the human eye, Progress in Retinal and Eye Research 30(6), 2011: 431-451. https://doi.org/10.1016/j.preteyeres.2011.06.003
  • [4] BAUMANN B., Polarization sensitive optical coherence tomography: A review of technology and applications, Applied Sciences 7(5), 2017: 474. https://doi.org/10.3390/app7050474
  • [5] PIERCE M.C., SHISHKOV M., HYLE PARK B., NASSIF N.A., BOUMA B.E., TEARNEY G.J., DE BOER J.F., Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography, Optics Express 13(15), 2005: 5739–5749. https://doi.org/10.1364/OPEX.13.005739
  • [6] JISHA C.P., NOLTE S., ALBERUCCI A., Geometric phase in optics: From wave front manipulation to waveguiding, Laser & Photonics Reviews 15(10), 2021: 2100003. https://doi.org/10.1002/lpor.202100003
  • [7] DOU J., XI T., MA C., DI J., ZHAO J., Measurement of full polarization states with hybrid holography based on geometric phase, Optics Express 27(6), 2019: 7968-7978. https://doi.org/10.1364/OE.27.007968
  • [8] KURZYNOWSKI P., WOŹNIAK W.A., SZARYCZ M., Geometric phase: Two triangles on the Poincaré sphere, Journal of the Optical Society of America A 28(3), 2011: 475-482. https://doi.org/10.1364/JOSAA.28.000475
  • [9] BRON A.J., The architecture of the corneal stroma, British Journal of Ophthalmology 85(4), 2001: 379–381. https://doi.org/10.1136/bjo.85.4.379
  • [10] TUCHIN V.V., Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, Third Ed., SPIE, Bellingham 2015: 988. https://doi.org/10.1117/3.1003040
  • [11] MEEK K.M., KNUPP C., Corneal structure and transparency, Progress in Retinal and Eye Research 49, 2015: 1–16. https://doi.org/10.1016/j.preteyeres.2015.07.001
  • [12] DONOHUE D.J., STOYANOV B.J., MCCALLY R.L., FARRELL R.A., Numerical modeling of the cornea’s lamellar structure and birefringence properties, Journal of the Optical Society of America A 12(7), 1995: 1425-1438. https://doi.org/10.1364/JOSAA.12.001425
  • [13] YANG B., JAN N.J., BRAZILE B., VOORHEES A., LATHROP K.L., SIGAL I.A., Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues, Journal of Biophotonics 11(8), 2018: e201700356. https://doi.org/10.1002/jbio.201700356
  • [14] LIPPOK N., COEN S., LEONHARDT R., NIELSEN P., VANHOLSBEECK F., Instantaneous quadrature components or Jones vector retrieval using the Pancharatnam–Berry phase in frequency domain low -coherence interferometry, Optics Letters 37(15), 2012: 3102-3104. https://doi.org/10.1364/OL.37.003102
  • [15] LIPPOK N., COEN S., LEONHARDT R., NIELSEN P., VANHOLSBEECK F., Depth-ambiguity free or polarization sensitive optical frequency domain imaging using the Pancharatnam-Berry phase, Proceedings of the SPIE, Vol. 8213, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XVI, 2012: 82131J. https://doi.org/10.1117/12.911632
  • [16] GARZA-SOTO L., HAGEN N., LOPEZ-MAGO D., Deciphering Pancharatnam’s discovery of geometric phase: Retrospective, Journal of the Optical Society of America A 40(5), 2023: 925-931. https://doi.org/10.1364/JOSAA.485485
  • [17] COLLETT E., Field Guide to Polarization, SPIE Press, Bellingham 2005: 7-61. https://doi.org/10.1117/3.626141
  • [18] GARZA-SOTO L., HAGEN N., LOPEZ-MAGO D., OTANI YU., Wave description of geometric phase, Journal of the Optical Society of America A 40(2), 2023: 388-396. https://doi.org/10.1364/JOSAA.480814
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-318c3bcc-3fdd-49cf-a720-62422f6707a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.