PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new polynomial-time implementation of the out-of-kilter algorithm using Minty’s lemma

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is less well known how to use the out-of-kilter idea to solve the min-cost flow problem because the generic version of the out-of-kilter algorithm runs in exponential time, although it is the sort of algorithm that computers can do easily. Ciupala (2005) presented a scaling out-of-kilter algorithm that runs in polynomial time using the shortest path computation in each phase. In this paper, we present a new polynomial time implementation of out-of-kilter idea. The algorithm uses a scaling method that is different from Ciupala’s scaling method. Each phase of Ciupala’s method needs a shortest path computation, while our algorithm uses Minty’s lemma to transform all the out-of-kilter arcs into in-kilter arcs. When the given network is infeasible, Ciupala’s algorithm does not work, but our algorithm presents some information that helps to repair the infeasible network.
Rocznik
Strony
79--94
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Department of Mathematics, Faculty of Science Bu-Ali Sina University, Hamedan, Iran
Bibliografia
  • 1. AHUJA R.K., GOLDBERG A.V., ORLIN J.B. and TARJAN R.E. (1992)
  • 2. Finding minimum-cost flows by double scaling. Mathematical Programming 53, 243-266.
  • 3. AHUJA R.K., MAGNANTI T.L. and ORLIN J.B. (1993) Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ.
  • 4. BUSAKER R.G. and GOWEN P.J. (1961) A procedure for Determining a Family of minimal-cost Network Flow patterns. Technical Report 15, O.R.O.
  • 5. CIUPALA L. (2005) A scaling out-of-kilter algorithm for minimum cost flow. Control and Cybernetics 34(4), 1169-1174.
  • 6. EDMONDS I. and KARP R.M. (1972) Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the Association on Computing Machinery 19, 248-264.
  • 7. ERVOLINA T.R. and MCCORMICK S.T. (1993) Two strongly polynomial cut canceling algorithms for minimum cost network flow. Discrete Applied Mathematics 46, 133-5.
  • 8. FULKERSON D.R. (1961) An out-of-kilter method for minimal cost flow problems. SIAM Journal on Applied Mathematics 9, 18-27.
  • 9. GOLDBERG A.V and TARJAN R.E. (1990) Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 16, 430-466.
  • 10. GONDRAN M. and MINOUX M. (1984) Graphs and Algorithms (trans. S. Vajda). Wiley, New York.
  • 11. HASSIN R. (1983) The minimum cost flow problem: A unifying approach to dual algorithms and a new tree search algorithm. Mathematical Programming 25, 228-239.
  • 12. HOFFMAN A.J. (1960) Some recent applications of the theory of linear in- equalities to extremal combinatorial analysis. In: R. Bellman and M. Hall (eds.), Combinatorial Analysis. Proc. of Symposia in Applied Mathematics, X. American Mathematical Society, Providence, Rhode Island, 113-127.
  • 13. JEWELL W.S. (1958) Optimal Flow through Networks. Technical Report 8, M.I.T.
  • 14. MINTY G.J. (1960) Monotone networks. Proc. Roy. Soc. London, 257, 194-212.
  • 15. MINTY G.J. (1966) On the Axiomatic Foundations of the Theories of Directed linear Graphs, Electrical Networks and Programming. Journal of Mathematics and Mechanics 15, 485-520.
  • 16. ORLIN J.B. (1993) A faster strongly polynomial minimum cost flow algorithm. Operations Research, 41, 338 350.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3187a262-57bd-4a67-bfd8-d5b15dd6ce8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.