
Control and Cybernetics

vol. 43 (2014) No. 1

A new polynomial-time implementation of the

out-of-kilter algorithm using Minty’s lemma∗

by

Mehdi Ghiyasvand

Department of Mathematics, Faculty of Science
Bu-Ali Sina University, Hamedan, Iran

mghiyasvand@basu.ac.ir

Abstract: It is less well known how to use the out-of-kilter idea
to solve the min-cost flow problem because the generic version of the
out-of-kilter algorithm runs in exponential time, although it is the
sort of algorithm that computers can do easily. Ciupala (2005) pre-
sented a scaling out-of-kilter algorithm that runs in polynomial time
using the shortest path computation in each phase. In this paper,
we present a new polynomial time implementation of out-of-kilter
idea. The algorithm uses a scaling method that is different from
Ciupala’s scaling method. Each phase of Ciupala’s method needs a
shortest path computation, while our algorithm uses Minty’s lemma
to transform all the out-of-kilter arcs into in-kilter arcs. When the
given network is infeasible, Ciupala’s algorithm does not work, but
our algorithm presents some information that helps to repair the
infeasible network.

Keywords: network flows, the minimum cost flow problem, out-
of-kilter algorithm, Minty’s lemma

1. Introduction

Classical algorithms for the minimum cost flow problem are the out-of-kilter
algorithm (see Fulkerson, 1961, and Minty, 1960) and the cheapest path aug-
mentation (see Busaker and Gowen, 1961). The out-of-kilter algorithm uses the
complementary slackness optimality condition, it selects arcs that do not satisfy
this condition and changes flow and potential to enforce the condition. Other
well known ideas to solve the problem have been presented by Edmonds and
Karp (1972), Goldberg and Tarjan (1990), Orlin (1993), and Ahuja, Goldberg,
Orlin and Tarjan (1992).

The our-of-kilter algorithm runs in exponential time in the worst case (see
Ahuja et al., 1993). This algorithm is the sort of algorithm that computers can
do easily, but people must be careful in using. Also the out-of-kilter algorithm

∗Submitted: November 2012; Accepted: January 2014.

80 M. Ghiyasvand

gives a geometrical explanation to the optimality concept. Ciupala (2005) pre-
sented a polynomial-time implementation of the out-of-kilter algorithm. This
algorithm performs several scaling phases for different values of a parameter
∆. Initially, ∆ = 2⌊logU⌋, where U is the largest absolute arc bound. In each
phase, the sum of kilter numbers decreases by at least ∆ units. This reduces
the value of ∆ by the factor of 2 if the residual network contains no arc whose
kilter number is at least ∆. In each phase, the shortest path computation is
done. Eventually, ∆ = 1, and, at the end of this phase, the current flow is a
minimum cost flow. Ciupala’s (2005) algorithm runs in O(m S(n,m) logU),
where n,m, and S(n,m) denote the number of nodes, number of arcs, and the
time required to solve the shortest path problem, respectively.

Although Minty’s lemma (see Gondran and Minoux, 1984, and Minty, 1966)
looks more like an amusing fact than a deep result, it is actually a rather powerful
lemma and plays an important role in the theory of flows in networks. In
this paper, we describe a new polynomial-time implementation to the out-of-
kilter idea using Minty’s lemma. Our method is a scaling algorithm, which uses
the scaling idea from Ervolina and McCormick (1993) to have a polynomial
implementation. Our algorithm uses Minty’s lemma to transform all the out-
of-kilter arcs into in-kilter arcs. This algorithm gives a geometrical explanation
to the optimality concept. The case when the network is infeasible is diagnosed
by the algorithm. We call our algorithm Minty-out-of-kilter algorithm or MOK
algorithm.

Ciupala’s algorithm cannot work for infeasible networks, since an input for
Ciupala’s algorithm is a feasible flow (see Ciupala, 2005, page 1171, line -3).
Thus, it does not present any information for these networks, but MOK algo-
rithm computes a δ∗-min-cost flow for an infeasible network, which gives suitable
information to repair the network and estimate the maximum cost for relaxing
the lower and upper bounds.

This paper consists of four sections in addition to the Introduction section.
Section 2 presents network notation and reviews some results used in the sub-
sequent sections. Our algorithm is shown in Section 3. Section 4 presents two
faster implementations of the algorithm. Finally, a comparison of MOK and
Ciupala’s algorithms is described in Section 5.

2. Preliminaries

2.1. Notation and definitions

A directed graph D is a pair D = (N,A) where N is a set of nodes and A is
a set of ordered pairs of nodes, called arcs. We denote an arc from node i to
node j by i → j and define the cost on arc i → j by cij . A simple cycle C
in a directed graph is a sequence i1, i2, . . . , ik of distinct nodes of N such that
either (ir, ir+1) ∈ A (a forward arc in C) or (ir+1, ir) ∈ A (a backward arc in C)
for r = 1, 2, . . . , k (where we interpret ik+1 as i1). A directed cycle is a simple
cycle with all forward arcs. A simple path and directed path are the same as

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 81

a simple cycle and directed cycle, respectively, without arc (ik, i1). If S is a
non-trivial subset of N (i.e. S 6= ∅, S 6= N) and S = N − S, then we define
(S, S) = {(i, j) | i ∈ S, j 6∈ S} and (S, S) = {(i, j) | i 6∈ S, j ∈ S}. The arc
subset (S, S) (and (S, S)) is called a cut.

2.2. The minimum cost flow problem and the optimality of a flow

Let D = (N,A) be a directed graph with |N | = n and |A| = m. Let c ∈ RA be
a cost function on A and l, u be lower and upper bounds on A, with lij ≤ uij
for each arc (i, j) ∈ A. The primal linear programming formulation (the primal
problem) of the minimum cost flow problem is

min
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N

xij −
∑

j∈N

xji = 0, i ∈ N, (1)

lij ≤ xij ≤ uij . (i, j) ∈ A. (2)

The primal problem has flow xij on arc (i, j). We call x ∈ RA a circulation if
only (1) is required and a bounded circulation if both (1) and (2) are required.
The primal problem is feasible if and only if there is a flow x satisfying (1) and
(2). The following theorem is a well-known result on the feasibility of the primal
problem.

Theorem 1 (Hoffman, 1960). The primal problem is feasible if and only if for

every cut (S, S),
∑

(i,j)∈(S,S)

lij −
∑

(i,j)∈(S,S)

uij ≤ 0.

We associate a node potential πi to each node i and define the reduced cost of
an arc (i, j) as

cπij = cij − πi + πj . (3)

The dual linear program of the minimum cost flow problem (the dual problem) is

max
∑

i→j∈A

(cπij)
+lij −

∑

i→j∈A

(cπij)
−uij .

s.t πj + cij − πi = cπij , (i, j) ∈ A,
πi: free, i ∈ N

Note that (cπ)+=max (0, cπ), (cπ)−=max (0,−cπ) and π is feasible for the
dual problem if it satisfies the constrains of the dual problem. The comple-
mentary slackness conditions for general linear programming, when specialized

82 M. Ghiyasvand

for the minimum cost flow problem, result in the following characterization of
optimal primal and dual solutions for the primal and dual problems.

Theorem 2 The pair x, π is optimal for the primal and dual problems if and
only if

• x is feasible for the primal problem,
• π is feasible for the dual problem, and
• for every (i, j) ∈ A,

cπij < 0 ⇒ xij = uij , (4)

cπij > 0 ⇒ xij = lij . (5)

Supposing that we are given node potentials π, for each arc (i, j), define lower
bound lπij and upper bound uπij by

if cπij > 0, then lπij = uπij = lij ,
if cπij = 0, then lπij = lij , u

π
ij = uij , and

if cπij < 0, then lπij = uπij = uij .

The following theorem is an equivalent formulation of (4) and (5).

Theorem 3 (Ervolina and McCormick, 1993; Hassin, 1983). Feasible node po-
tentials π are optimal to the dual problem if and only if the primal network with
nodes N , arcs A, lower bounds lπ and upper bounds uπ has a bounded circulation
flow.

For β ≥ 0, define that π is β-optimal if there is a circulation x such that for all
arc (i, j),

cπij > 0 ⇒ lij − β ≤ xij ≤ lij + β, (6)

cπij = 0 ⇒ lij − β ≤ xij ≤ uij + β, and (7)

cπij < 0 ⇒ uij − β ≤ xij ≤ uij + β. (8)

By Theorem 3, π is optimal if and only if it is 0-optimal. In our algorithm, we
start out with β large and drive δ toward zero. The following lemma says that
β need not start out too big, and need not end up too small. We define ψ as
the largest absolute arc bound.

LEMMA 1 (Ervolina and McCormick, 1993). Any node potentials π are ψ-
optimal. Moreover, when β < 1

m
, all β-optimal node potentials are optimal to

the dual problem.

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 83

Consider node potential π, we call a network with nodes N , arcs A and con-
straints (1), (6), (7) and (8) the β-network corresponding to π. We say x is a
feasible flow for the β-network corresponding to π if it satisfies (1), (6), (7) and
(8). Thus, π is a β-optimal set of node potentials if and only if there is a feasible
flow for β-network corresponding to π.

3. The MOK algorithm

Our algorithm treats β as a parameter and iteratively obtains β-optimal poten-
tial for successively smaller values of β. Initially, β = ψ, x = 0 and π = 0. The
algorithm executes scaling phases, where each scaling phase cuts β in half and
applies Function-1 that transforms a 2β-optimal set of node potentials into a
β-optimal set of node potentials. This continues until β < 1

m
, at which point

Lemma 1 says that we are finished, having done O(log(nU)) phases.

Definition 1 We are given a feasible flow x for 2β-network corresponding to
π, then three sets α, θ, and λ are defined as follows:
Let α = α− ∪ α+ such that

α+ =







{(i, j) ∈ A | uij + β < xij ≤ uij + 2β}, if cπij ≤ 0,

{(i, j) ∈ A | lij + β < xij ≤ lij + 2β}, if cπij > 0,

and

α− =







{(i, j) ∈ A | uij < xij ≤ uij + β}, if cπij ≤ 0,

{(i, j) ∈ A | lij < xij ≤ lij + β}, if cπij > 0.

Let θ = θ+ ∪ θ− such that

θ+ =







{ (i, j) ∈ A | uij − 2β ≤ xij < uij − β}, if cπij < 0,

{(i, j) ∈ A | lij − 2β ≤ xij < lij − β}, if cπij ≥ 0,

and

θ− =







{(i, j) ∈ A | uij − β ≤ xij < uij}, if cπij < 0,

{(i, j) ∈ A | lij − β ≤ xij < lij}, if cπij ≥ 0.

84 M. Ghiyasvand

Let

λ =































{(i, j) ∈ A | xij = uij}, if cπij < 0,

{(i, j) ∈ A | xij = lij}, if cπij > 0,

{(i, j) ∈ A | lij ≤ xij ≤ uij}, if cπij = 0.

If θ+ ∪ α+ = φ, then x is also a feasible flow for the β-network corresponding
to π. If θ+ ∪ α+ 6= φ, then Function-1 changes xij ’s and πi’s using the idea of
Minty’s lemma. The following lemma is a modified version of Minty’s Lemma
(see Gondran and Minoux, 1984, and Minty, 1966).

LEMMA 2 Let D = (N,A) be a graph whose arcs are divided into three sets
θ, α, and λ. Assume that ao ∈ θ (respectively, ao ∈ α), then one of the follow-
ing cases applies:
(a) A simple cycle C containing ao exists such that all arcs of C that are in
the set θ have the same (respectively, opposite) direction as ao and all arcs of
C that are in α have an opposite (respectively same) direction to ao (call C a
Minty-cycle).
(b) A cut (S, S), which contains ao and does not contain the arcs of λ, exists,
such that all arcs of (S, S) are in the set α and all arcs of (S, S) are in the set
θ, i.e. if (i, j) ∈ (S, S) then (i, j) ∈ α and if (i, j) ∈ (S, S) then (i, j) ∈ θ (call
(S, S) a Minty-cut).

Function-1 is the essential part of each phase of the MOK algorithm. The
input to Function-1(β, π, x) is a 2β-optimal set of node potentials π and a feasi-
ble flow x for the 2β-network corresponding to π and its output is a β-optimal
set of node potentials π′ and a feasible flow x′ for the β-network corresponding
to π′.

Definition 2 Given a directed network D = (N,A), let x be a feasible flow
for the 2β-network corresponding to π. We define β-residual network D(x, β) =
(N,A(x)) as follows. For every arc (i, j) ∈ A, there is an arc (i, j) ∈ A(x) with
capacity rij = (uij+β)−xij and cost cπij, and there is an arc (j, i) with capacity
rji = xij − (lij − β) cost cπji = −cπij.

For each arc (i, j) ∈ A(x), the β-kilter number kij is defined as follows:

kij =















⌈
−rji
β

⌉, if rji < 0,

⌈
rij−2β

β
⌉, if rij > β, and cπij < 0,

0, otherwise.

(9)

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 85

LEMMA 3 Let x be a feasible flow for the 2β-network corresponding to π, then
a) kij = 0 or 1, for each (i, j) ∈ A(x).
b) If, for each (i, j) ∈ A(x), kij = 0, then θ+ ∪ α+ = φ.

PROOF By Definition 2, we have rji < 0 if (i) there is an arc (i, j) ∈ A
such that (i, j) ∈ θ+ and cπij ≥ 0 (which means lij − 2β ≤ xij < lij − β), or
(ii) there is an arc (j, i) ∈ A such that (j, i) ∈ α+ and cπji ≤ 0 (which means
uji + β < xji ≤ uji + 2β). In case (i), we have rji = xij − (lij − β) < 0 and

(lij −β)−xij < β, so 0 < −rji < β, which means kij = ⌈−rji
β

⌉ = 1. In case (ii),

we have rji = (uij+β)−xij < 0 and 0 < xij−(uij+β) < β, thus 0 < −rji < β,

or kij = ⌈
−rji
β

⌉ = 1.

In a similar way, by Definition 2, we have rij > β, and cπij < 0 if (1)
there is an arc (i, j) ∈ A such that (i, j) ∈ θ+ and cπij < 0 (which means
uij − 2β ≤ xij < uij − β), or (2) there is an arc (j, i) ∈ A such that (j, i) ∈ α+

and cπji > 0 (which means lji + β < xji ≤ lji + 2β). In case (1), we have
2β < rij = (uij + β) − xij ≤ 3β or 0 < rij − 2β ≤ β, which means

kij = ⌈ rij−2β
β

⌉ = 1. Also, in case (2), we have 2β < rij = xij − (lij − β) ≤ 3β

or 0 < rij − 2β ≤ β, so, kij = ⌈ rij−2β
β

⌉ = 1.

Thus, by (9), for each (i, j) ∈ A(x), we have kij = 0 or 1. Also, if (i, j) ∈ θ+∪α+,
then, in A(x), we have kij = 1 or kji = 1 (and vice versa). Therefore, if
θ+ ∪ α+ = φ, then, for each (i, j) ∈ A(x), kij = 0 (and vice versa). �

Now, the β-active network is defined as follows. The β-active network con-
sists of all arcs in the β-residual network, but
i) If rij < β, then delete (i, j).
ii) If rij > β, rji > β, and cπij 6= 0, then, between (i, j) and (j, i), delete the one
with a positive reduced cost.

LEMMA 4
a) If (i, j) ∈ θ, then (i, j) is in the β-active network, but (j, i) is not.
b) If (i, j) ∈ α, then (j, i) is in the β-active network, but (i, j) is not.
c) If (i, j) ∈ λ, then both (i, j) and (j, i) are in the β-active network.

PROOF Consider (i, j) ∈ θ. If cπij ≥ 0, then rji < β (note, if (i, j) ∈ θ+,
then rji < 0), so (j, i) is not in the β-active network. If cπij < 0, then rij > β
and rji > β. Thus, by the definition of the β-active network, (j, i) is deleted
(since cπji > 0).

Now, consider (i, j) ∈ α. If cπij ≤ 0, then rij < β (note, if (i, j) ∈ G+, then
rij < 0), so (i, j) is not in the β-active network. If cπij > 0, then rij > β and
rji > β. Thus, by the definition of the β-active network, (i, j) is deleted (since
cπij > 0).

If (i, j) ∈ λ then, in A(x), rji ≥ β and rij ≥ β. Also, if (i, j) ∈ λ and cπij 6= 0,
then, in A(x), we have rij = β (if cπij < 0) or rji = β (cπij > 0). Thus, both (i, j)
and (j, i) are in the β-active network. �

86 M. Ghiyasvand

Let x be a feasible flow for the 2β-network corresponding to π. Using Lem-
mas 3 and 4, we describe Function-1 (see Algorithm 1). Construct the β-active
network. If kij = 0 (for each (i, j) in the β-active network), then, by Lemma
3, we have θ+ ∪ α+ = φ, which means x is a feasible flow for the β-network
corresponding to π. Otherwise, an arc (w, v) with kwv = 1 is chosen. Let S
be the set of nodes that are reachable in the β-active network from node v. If
w ∈ S, then find the cycle C containing (w, v) and send β units of flows around
C (by Lemmas 2 and 4, C is a Minty-cycle). This will reduce kwv to 0, and will
not increase the β-kilter of any arc. By Lemma 4, we get the following lemma.

LEMMA 5 Suppose that there is an arc (w, v) with kwv = 1 and S is the set of
nodes that are reachable in the β-active network from node v, then
a) In D = (N,A), if (i, j) ∈ (S, S), then (i, j) ∈ α.
b) In D = (N,A), if (i, j) ∈ (S, S), then (i, j) ∈ θ.

Note that, by Lemmas 2 and 5, (S, S) is a Minty-cut. If i 6∈ S, Function-1
changes the node potentials π so that we can reach at least a node of the set of
nodes S. For it, the procedure sends at least one (i, j) ∈ (S, S)∪ (S, S) into the
set λ. Let Q1 = {cπij | (i, j) ∈ (S, S), cπij > 0, xij<uij

}, Q2 = {−cπij | (i, j) ∈

(S, S), cπij < 0, xij > lij }, and η = min (min Q1, min Q2).

It is easy to prove that if Q1 ∪ Q2 = ∅, then the primal problem is infeasi-
ble. Supposing that Q1 ∪Q2 6= φ, we change the πi’s according to

π′
i =

{

πi + η, if i ∈ S,
πi, if i ∈ S.

(10)

LEMMA 6 After adjusting πi’s,
(a) At least one arc in (S, S) ∪ (S, S) is entered into the set λ.
(b) The arcs of the set θ− ∪ α− ∪ λ are not entered into the set θ+ ∪ α+.

PROOF By (10), for each (i, j) ∈ (S, S), cπij is decreased by η and for each

(i, j) ∈ (S, S), cπij is increased by η. Lemma 5 says that if (i, j) ∈ (S, S), then

(i, j) ∈ α and if (i, j) ∈ (S, S), then (i, j) ∈ B. Let Q1∪Q2 6= φ, so, at least one
cπij 6= 0 (such that cπij ∈ Q1 or −cπij ∈ Q2) is changed to cπij = 0. Therefore, at

least an arc (i, j) ∈ (S, S) ∪ (S, S) is entered into the set λ. Hence, we proved
(a).

Now, we prove (b). cπij ’s are changed only if (i, j) ∈ (S, S) ∪ (S, S). Sup-

pose that (i, j) ∈ (S, S), so i → j ∈ α, and cπij is decreased. We show that if
(i, j) ∈ α− then it is not entered into θ+ ∪ α+. There are two cases. 1) cπij ≤ 0:
by decreasing cπij , the arc (i, j) is retained in the set α−. 2) cπij > 0: it is
impossible that cπij be changed to cπij < 0 . Thus, after decreasing cπij , (i, j) will

be in α− or λ. The case (i, j) ∈ (S, S) can be proved in a similar way to the
case (i, j) ∈ (S, S). �

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 87

Therefore, Function-1, in each iteration, selects an arc (w, v) with kwv = 1
and finds the set of nodes that are reachable in the β-active network from node
v . If w ∈ S, then there is a cycle C containing (w, v) (which is a Minty-cycle).
But if w 6∈ S, then we can add at least one new node to the set S (which is a
Minty-cut). Algorithm 1 shows Function-1 and the following theorem gives its
running time.

Function-1
Begin

Define the β-residual network D(x, β) and the β-active network;
1 Do while there is an arc (w, v) with kwv = 1;

Begin
2 Let S be the set of nodes that are reachable in the β-active network

from node v;
If w ∈ S

Begin
Find, in the β-active network, the cycle C containing (w, v);
Send β units of flow around C;
Update the β-residual network using Definition 2;
Update kij ’s and the β-active network;
Go to 1;

End
If Q1 ∪Q2 = φ then the primal problem is infeasible and break;
Else
Begin
Update πi’s (by (10)), the β-active network and kij ’s;
If cπwv = 0 then update kij ’s and go to 1;
Else go to 2;

End;
End;

End.
Algorithm 1. Function-1.

Theorem 4 The MOK algorithm runs in O(m2n log(nU)) time.

PROOF By Lemma 6, once an arc (w, v) with kwv = 1 changes to kwv = 0, it
will never change to kwv = 1 in the other iterations, therefore the number of
iterations, in Function-1, is at most m. In each iteration, in the worst case, we
need at most n − 1 computations of operations, which run in O(m) time, so,
Function-1 runs in O(m2n). Therefore, by Lemma 1, we conclude the running
time of MOK algorithm. �

The MOK algorithm gives a geometrical explanation to the optimality concept
of the minimum cost flow problem. In each phase, it shows how we are away
from the optimality conditions by β units.

88 M. Ghiyasvand

4. Faster implementations of MOK algorithm

In this section, faster implementations of the MOK algorithm are presented.
Let rij = uij − xij and rji = xij − lij . The kilter number kij of arc (i, j) is
defined as the increase needed in the flow in (i, j) to bring the arc in to kilter.
Thus, 1) if cπij < 0 and rij ≥ 0, then kij = rij ; 2) If c

π
ij ≤ 0 and rij < 0, then

kij = −rji.

If the kilter number of (i, j) is at least 1, then sending one unit of flow in
(i, j) in the residual network will decrease the kilter number of (i, j) by 1. In
the original out-of-kilter algorithm, the kilter number is the deviation from the
optimality conditions. In our definition, increasing the flow will decrease the
kilter numbers (note that at most one of the arcs (i, j) and (j, i) has a positive
kilter number).

Each phase starts with a flow such that kilter number of every arc is at most
β. At the end of the scaling phase, each arc has kilter number at most β. We
construct a kilter graph at the scaling phase as follows. An arc (i, j) is green
(respectively yellow) if kij > β (respectively yellow). If kij = kji = 0, then (i, j)
and (j, i) are both yellow. If (i, j) is yellow, and if β units of flow are sent in
(i, j), the kilter numbers of (i, j) drops to zero, and the kilter number of (j, i) is
at most β. We refer to the graph as the β-kilter graphs. The following theorem
is proven in a similar way to the proof of Minty’s lemma.

Theorem 5 Suppose that (i, j) is a green arc of the β-kilter graph. Either there
is a directed cycle C containing (i, j) such that C contains green and yellow arcs
or else there is a partition of the nodes into subsets S and T such that j ∈ S,
i ∈ T , and there is no green or yellow arc directed from S to T .

Theorem 1 is much simpler than Minty’s colored lemma, but it is all that is
needed for the out-of-kilter algorithm. If the MOK algorithm is run using the
above ideas, it can be implemented in O(n2m) time, which would be an im-
provement over the algorithm presented in the last section by a factor of m/n.
The m/n factor improvement is obtained by continuing with the same green arc
until a cycle is found (or the problem is proved to be infeasible) and by letting
f(j) be minimum reduced cost of an arc from set S to node j, where set S is
the set of nodes reachable from node j in the β-kilter graph. The reduced costs
would not be stored exactly following a change in node potential. Rather, the
f(j) values would be updated. This update takes O(n) time instead of O(m).

Let S(n,m) be the complexity of the shortest path, the running time could
be further improved to O(mS(n,m)) per scaling scaling phase by waiting till the
cycle is found before updating any of the node potentials or reduced costs. But
this implementation would look identical to the shortest path implementation of
the out-of-kilter. This improved implementation would be much more efficient
than the algorithm presented in the last section, but it would determine the
same cycles, and it would have the same node potentials following the changes
in flow as does the algorithm in the last section.

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 89

5. Comparison of MOK algorithm and Ciupala’s algorithm

In this section, merits of our algorithm in comparison with Ciupala’s algorithm
are discussed. For this purpose, we need the following definitions.

Definition 3 A flow x is defined as a δ-min-cost flow w.r.t. potential π if

1.
∑

j∈N

xij −
∑

j∈N

xji = 0, i ∈ N .

2. For each arc (i, j) ∈ A:

If cπij > 0 ⇒ lij − δ ≤ xij ≤ lij + δ,
If cπij = 0 ⇒ lij − δ ≤ xij ≤ uij + δ, and
If cπij < 0 ⇒ uij − δ ≤ xij ≤ uij + δ.

Definition 4 A flow x is called a δ∗-min-cost flow if it is a δ∗-min-cost flow,
but not a δ∗

2 -min-cost flow.

Theorem 6 Suppose that network G(V,A) is infeasible and lij and uij are the
lower and upper bounds for (i, j) ∈ A. Let x∗ be a δ∗-min-cost flow w.r.t. po-
tential π, then
a) Network G = (V,A) with bounds lij and uij defined as follows is feasible:

If cπij > 0 and x∗ij < lij , then lij = x∗ij and uij = uij.

If cπij > 0 and x∗ij ≥ lij , then lij = lij and uij = uij.

If cπij < 0 and x∗ij > uij, then uij = x∗ij and lij = lij .

If cπij < 0 and x∗ij ≤ uij, then uij = uij and lij = lij .

If cπij = 0 and x∗ij < lij , then lij = x∗ij and uij = uij.

If cπij = 0 and x∗ij > uij, then uij = x∗ij and lij = lij .

If cπij = 0 and lij ≤ x∗ij ≤ uij, then lij = lij and uij = uij.

b) The upper bound for the cost of repairing the infeasible network is mδ∗.

PROOF By (5) and Definition 4, we conclude Claim (a). By Definition 5, for
each (i, j) ∈ A, we have lij − lij ≤ δ∗ and uij − uij ≤ δ∗. On the other hand,
there are m arcs, so Claim (b) is obvious. �

It is obvious that each min cost flow is a 0-min-cost flow. There are many
infeasible networks, so there is no 0-min-cost flow for these networks. For ex-
ample, consider the network in Fig. 1. This network is infeasible, since the
lower bound for exiting flow from Node 2 is 11 units, but the upper bound
for its entering flow is 8. An input for Ciupala’s algorithm is a feasible flow
(see Ciupala, 2005, page 1171, line -3), so, Ciupala’s algorithm can not work
for infeasible networks and does not present any result for these networks, but

90 M. Ghiyasvand

MOK algorithm presents a δ∗-min-cost flow. By Theorem 6, this flow is an
infeasible flow which gives suitable information to estimate the maximum cost
for repairing the infeasible network. In the following, by MOK algorithm, first
a δ∗-min-cost flow for the infeasible network in Fig. 1 is computed, then an
estimate of the maximum cost for repairing this infeasible network is presented.

Initial data in MOK algorithm are β = U = 12, π = 0 and x = 0. It is
obvious that x = 0 is 12-optimal. By letting β = 12/2 = 6, we apply the first
phase of MOK algorithm using Function-1(6,0,0). By rij = (uij + β)− xij and
rji = xij − (lij − β), we have

r12 = (8 + 6)− 0 = 14 and r21 = 0− (4− 6) = 2, so k12 = k21 = 0,
r23 = (8 + 6)− 0 = 14 and r32 = 0− (4− 6) = 2, so k23 = k32 = 0,
r24 = (10+6)−0 = 16 and r42 = 0− (7−6) = −1, so k24 = 1 and k42 = 0,
r43 = (12 + 6)− 0 = 18 and r34 = 0− (6− 6) = 0, so k43 = k34 = 0,
r31 = (11 + 6)− 0 = 17 and r13 = 0− (4− 6) = 2, so k31 = k13 = 0.

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞

✍✌
✎☞✑

✑
✑

✑✑✸ ◗
◗
◗
◗◗s

❩
❩

❩
❩⑥ ✑

✑
✑

✑✑✰
❄

1

2

3

4

(2, 4, 8) (1, 7, 10)

(4, 4, 11) (0, 6, 12)

(3, 4, 8)

✍✌
✎☞

✍✌
✎☞

✲
(cij , lij , uij)

i j

Figure 1. An example network
The values of r13, r34, r42, r32 and r21 are less than β = 6, thus arcs (1, 3), (3, 4),
(4, 2), (3, 2) and (2, 1) are deleted and the 6-active network is as in Fig. 2.

1

2

3

4

Figure 2. The 6-active network

Note that (w, v) = (2, 4). The set of nodes that are reachable in the 6-active
network from node 4 is S = {3, 1, 2}, hence w = 2 ∈ S. By sending β = 6 units
of flow around cycle 4− 3− 1− 2− 4, we have:

x43 = x31 = x12 = x24 = 6 and x23 = 0,
r12 = (8 + 6)− 6 = 8 and r21 = 6− (4 − 6) = 8, so k12 = k21 = 0,
r23 = (8 + 6)− 0 = 14 and r32 = 0− (4− 6) = 2, so k23 = k32 = 0,

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 91

r24 = (10 + 6)− 6 = 10 and r42 = 6− (7− 6) = 5, so k24 = k42 = 0,
r43 = (12 + 6)− 6 = 12 and r34 = 6− (6− 6) = 6, so k43 = k34 = 0,
r31 = (11 + 6)− 6 = 11 and r13 = 6− (4− 6) = 8, so k31 = k13 = 0.

There is no arc (w, v) with kwv = 1, so a new phase with β = 6/2 = 3 is
started.

In this phase, we have:

x43 = x31 = x12 = x24 = 6 and x23 = 0,
r12 = (8 + 3)− 6 = 5 and r21 = 6− (4 − 3) = 5, so k12 = k21 = 0,
r23 = (8 + 3) − 0 = 11 and r32 = 0 − (4 − 3) = −1, so k23 = 1 and

k32 = 0,
r24 = (10 + 3)− 6 = 7 and r42 = 6− (7− 3) = 2, so k24 = k42 = 0,
r43 = (12 + 3)− 6 = 9 and r34 = 6− (6− 3) = 3, so k43 = k34 = 0,
r31 = (11 + 3)− 6 = 8 and r13 = 6− (4− 3) = 5, so k31 = k13 = 0.

By (r42 < β), (r12 > β, r21 > β, and cπ12 > 0) and (r31 > β, r13 > β, and
cπ31 > 0), the arcs (4, 2), (1, 2), and (3, 1) are deleted and the 3-active network is
as in Fig. 3. In this stage (w, v) = (2, 3) and the set of nodes that are reachable

1

2

3

4

Figure 3. The 3-active network

in the 3-active network from node 3 is S = {3, 4}, so w 6∈ S, but Q1 = {4} and
Q2 = φ, which means η = 4. Thus, by (7),

π4 = π3 = 4, π1 = π2 = 0, cπ31 = 0, cπ24 = 5, cπ23 = 7, cπ12 = 2, cπ43 = 0.

By cπ31 = 0, arc (3, 1) is added to the 3-network, so S = {3, 4, 1}, but w 6∈ S. In
this stage, Q1 = {2} and Q2 = φ, so η = 2, and

π4 = π3 = 6, π1 = 2, π2 = 0, cπ31 = 0, cπ24 = 7, cπ23 = 9, cπ12 = 0, cπ43 = 0.

Consequently, S = {3, 4, 1, 2} and w ∈ S. By sending β = 3 units of flow around
the cycle 2− 3− 1− 2, we have:

x43 = x24 = 6, x31 = x12 = 9 and x23 = 3.

Hence,

92 M. Ghiyasvand

cπ12 = 0, r12 = (8 + 3)− 9 = 2 and r21 = 9− (4− 3) = 8, so k12 = k21 = 0,
cπ23 = 9, r23 = (8 + 3)− 3 = 8 and r32 = 3− (4− 3) = 2, so k23 = k32 = 0,
cπ24 = 7, r24 = (10 + 3)− 6 = 7 and r42 = 6− (7− 3) = 2, so k24 = k42 = 0,
cπ43 = 0, r43 = (12 + 3)− 6 = 9 and r34 = 6− (6− 3) = 3, so k43 = k34 = 0,
cπ31 = 0, r31 = (11 + 3)− 9 = 5 and r13 = 9− (4− 3) = 8, so k31 = k13 = 0.

In this stage, for each arc (i, j): kij = 0, thus a new phase with β = 3/2 = 1.5
is started. In the new phase, rij ’s and kij ’s are as follows:

cπ12 = 0, r12 = (8 + 1.5) − 9 = 0.5 and r21 = 9 − (4 − 1.5) = 6.5, so
k12 = k21 = 0,
cπ23 = 9, r23 = (8 + 1.5) − 3 = 6.5 and r32 = 3 − (4 − 1.5) = 0.5, so

k23 = k32 = 0,
cπ24 = 7, r24 = (10 + 1.5) − 6 = 5.5 and r42 = 6 − (7 − 1.5) = 0.5, so

k24 = k42 = 0,
cπ43 = 0, r43 = (12 + 1.5) − 6 = 7.5 and r34 = 6 − (6 − 1.5) = 1.5, so

k43 = k34 = 0,
cπ31 = 0, r31 = (11 + 1.5) − 9 = 3.5 and r13 = 9 − (4 − 1.5) = 6.5, so

k31 = k13 = 0.

Thus, for each arc (i, j), kij = 0, and the algorithm goes to the next phase
with β = 1.5/2 = 0.75 and the following values:

cπ12 = 0, r12 = −0.25 and r21 = 5.75, so k12 = 0, k21 = 1.
cπ23 = 9, r23 = 5.75 and r32 = −0.25, so k23 = 1, k32 = 0.
cπ24 = 7, r24 = 4.75 and r42 = −0.25, so k24 = 1, k42 = 0.
cπ43 = 0, r43 = 6.75 and r34 = 0.75, so k43 = k34 = 0.
cπ31 = 0, r31 = 2.75 and r13 = 5.75, so k31 = k13 = 0.

The values of r12, r32, and r42 are less than β = 0.75, so arcs (1, 2), (3, 2),
and (4, 2) are deleted and the 0.75-active network is as in Fig. 4.

1

2

3

4

Figure 4. The 0.75-active network

Note that (w, v) = (2, 1). The set of nodes that are reachable in the 0.75-
active network from node 1 is S = {1, 3, 4}, hence w = 1 6∈ S, but Q1 ∪Q2 = φ,

Polynomial–time implementation of out-of-kilter algorithm with Minty’s lemma 93

which means the network presented in Fig 1 is infeasible.

Therefore, δ∗ = 1.5 and a δ∗-min-cost flow is x43 = x24 = 6, x31 = x12 = 9
and x23 = 3. By Theorem 6, in order to have a feasible network, the lower and
upper bounds is changed as follows:

cπ24 > 0 and x∗24 = 6 < l24 = 7, so l24 = 6 and u24 = u24,
cπ43 = 0 and l43 = 6 = x∗43 < u43, so l43 = l43 and u43 = u43,
cπ23 > 0 and x∗23 = 3 < l23 = 4, so l23 = 3 and u23 = u23,
cπ31 = 0 and l31 < x∗31 < u31, so l31 = l31 and u31 = u31,
cπ12 = 0 and x∗12 = 9 > u12 = 8, so u12 = 9 and l12 = l12.

Thus, the lower bound in arcs (2, 4) and (2, 3) is decreased by one unit. Also,
the upper bound in arc (1, 2) is increased by one unit. Hence, by MOK algo-
rithm, in order to have a feasible network, the sum of relaxations in bounds is
3 units, but Ciupala algorithm does not present any information to repair the
infeasible network.

Acknowledgements

I would like to thank the referee no. 1 for his/her suggestions to use resid-
ual networks instead of using the original network, which greatly simplify the
exposition. The author is also grateful to the referee for his/her valuable com-
ments to present Section 4, which improves the running time of our algorithm
to O(mS(n,m))∗. I would like to express my very great appreciation to Jan
W. Owsinski, Executive Editor, for his valuable and constructive comments,
especially for suggesting Section 5, which discusses the novelty and importance
of our algorithm.

References

AHUJA R.K., GOLDBERG A.V., ORLIN J.B. and TARJAN R.E. (1992)
Finding minimum-cost flows by double scaling. Mathematical Program-
ming 53, 243-266.

AHUJA R.K., MAGNANTI T.L. and ORLIN J.B. (1993) Network Flows: The-
ory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs, NJ.

BUSAKER R.G. and GOWEN P.J. (1961) A procedure for Determining a
Family of minimal-cost Network Flow patterns. Technical Report 15,
O.R.O.

CIUPALA L. (2005) A scaling out-of-kilter algorithm for minimum cost flow.
Control and Cybernetics 34(4), 1169-1174.

EDMONDS I. and KARP R.M. (1972) Theoretical improvements in algorith-
mic efficiency for network flow problems. Journal of the Association on
Computing Machinery 19, 248-264.

∗Actually, the idea of improvement in Section 4 came from the referee no. 1 (Eds.).

94 M. Ghiyasvand

ERVOLINA T.R. and MCCORMICK S.T. (1993) Two strongly polynomial
cut canceling algorithms for minimum cost network flow. Discrete Applied
Mathematics 46, 133-5.

FULKERSON D.R. (1961) An out-of-kilter method for minimal cost flow prob-
lems. SIAM Journal on Applied Mathematics 9, 18-27.

GOLDBERG A.V and TARJAN R.E. (1990) Finding minimum-cost circula-
tions by successive approximation. Mathematics of Operations Research
16, 430-466.

GONDRAN M. and MINOUX M. (1984) Graphs and Algorithms (trans. S.
Vajda). Wiley, New York.

HASSIN R. (1983) The minimum cost flow problem: A unifying approach to
dual algorithms and a new tree-search algorithm. Mathematical Program-
ming 25, 228-239.

HOFFMAN A.J. (1960) Some recent applications of the theory of linear in-
equalities to extremal combinatorial analysis. In: R. Bellman and M.
Hall (eds.), Combinatorial Analysis. Proc. of Symposia in Applied Math-
ematics, X. American Mathematical Society, Providence, Rhode Island,
113-127.

JEWELL W.S. (1958) Optimal Flow through Networks. Technical Report 8,
M.I.T.

MINTY G.J. (1960) Monotone networks. Proc. Roy. Soc. London, 257,
194-212.

MINTY G.J. (1966) On the Axiomatic Foundations of the Theories of Di-
rected linear Graphs, Electrical Networks and Programming. Journal of
Mathematics and Mechanics 15, 485-520.

ORLIN J.B. (1993) A faster strongly polynomial minimum cost flow algorithm.
Operations Research, 41, 338-350.

