PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation of cooperation of hybrid renewable energy sources with hydrogen energy storage toward the lowest net present cost

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optymalizacja współpracy hybrydowych źródeł energii odnawialnej z wodorowym magazynem energii w kierunku najniższego kosztu bieżącego netto
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of a technical and economic analysis of the power supply for a model industrial facility based on intermittent renewable energy sources in the form of wind turbines and photovoltaic modules, supplemented with hydrogen energy storage. The adopted power supply strategy assumed the maximisation of self-consumption of self-produced electricity. Six variants were considered, including two with an energy storage system, three using only RES, and a reference variant in which the model facility is powered by the power grid. The modelling and optimisation of the proposed variants was carried out in the HOMER software, in terms of the lowest net present cost. The results obtained indicate that the most advantageous configuration is a grid-connected hybrid renewable energy system consisting of wind turbines and a photovoltaic power plant. A system with hydrogen energy storage is much more profitable than powering the facility from the grid. The profitability of hydrogen energy storage increases even more with the projected increase in electricity prices and the falling prices of hydrogen system components.
PL
W artykule przedstawiono wyniki techniczno-ekonomicznej analizy zasilania modelowego obiektu przemysłowego energią elektryczną pochodzącą z niestabilnych źródeł energii odnawialnej. Jako źródła OZE rozpatrzono turbiny wiatrowe i moduły fotowoltaiczne współpracujące z wodorowymi magazynami energii. W przyjętej strategii zasilania założono maksymalizację zużycia na potrzeby własne samodzielnie wyprodukowanej energii elektrycznej. Rozważano sześć wariantów, w tym dwa z systemem magazynowania energii, trzy wykorzystujące wyłącznie OZE oraz wariant referencyjny, w którym modelowy obiekt był zasilany z sieci elektroenergetycznej. Modelowanie i optymalizację zaproponowanych wariantów przeprowadzono w programie HOMER pod kątem najniższego kosztu bieżącego netto. Uzyskane wyniki wskazują, że najkorzystniejszą konfiguracją jest przyłączony do sieci hybrydowy system energii odnawialnej, składający się z turbin wiatrowych i elektrowni fotowoltaicznej. Taki system z układem magazynowania energii za pośrednictwem wodoru jest znacznie bardziej opłacalny niż zasilanie obiektu z sieci. Rentowność magazynowania energii znacząco rośnie wraz z prognozowanym wzrostem cen energii elektrycznej i spadkiem cen elementów instalacji wodorowych.
Czasopismo
Rocznik
Tom
Strony
9--16
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wzory
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk
autor
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Institute of Energy, Gdansk
Bibliografia
  • [1] Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en#documents [accessed on 04 May 2023].
  • [2] Act of February 20, 2015 on renewable energy sources (in Polish). Journal of Laws (abbreviated Dz. U.), 2015, item 478) https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000478/U/D20150478Lj.pdf [accessed on 12 May 2023].
  • [3] Transmission Grid Code of Polish Transmission System Operator. Available online: https://www.pse.pl/dokumenty [accessed on 19 May 2023].
  • [4] Bronk L.; Czarnecki B.; Magulski R.: Flexibility of the National Power System. Diagnosis, potential, solutions. (in Polish), 02.2019. Available online: https://forum-energii.eu/pl/analizy/elastycznosckse [accessed on 28 Apr 2023].
  • [5] Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. A hydrogen strategy for a climate neutral Europe. Available online: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf [accessed on 04 May 2023].
  • [6] Guandalini G.; Robinius M.; Grube T.; Campanari S.; Stolten D.: Long-term power-to-gas potential from wind and solar power: A country analysis for Italy. Int. J. Hydrog. Energy 2017, 42, 13389-406. DOI:10.1016/j.ijhydene.2017.03.081.
  • [7] Zaik K.; Werle S.: Solar and wind energy in Poland as power sources for electrolysis process - A review of studies and experimental methodology. Int. J. Hydrog. Energy 2022 (In Press). DOI:10.1016/j.ijhydene.2022.02.074.
  • [8] Thirunavukkarasu M.; Sawle Y.: An examination of the techno-economic viability of hybrid grid-integrated and stand-alone generation systems for an Indian tea plant. Frontiers in Energy Research 2022, 10. DOI:10.3389/fenrg.2022.806870.
  • [9] Li J.; Liu P.; Li Z.: Optimal design of a hybrid renewable energy system with grid connection and comparison of techno-economic performances with an off-grid system: A case study of West China. Computers and Chemical Engineering 2022, 159, 107657. DOI:10.1016/j.compchemeng.2022.107657.
  • [10] Okundamiya M.S.: Size optimization of a hybrid photovoltaic/fuel cell grid connected power system including hydrogen storage. Int J Hydrog. Energy 2021, 46, 30539-46. DOI:10.1016/j.ijhydene.2020.11.185.
  • [11] Łukasik J., Jewartowski M., Wajs J.: Technoeconomic assessment of cooperation of hybrid renewable energy sources with hydrogen storage. Instal 2023, 11(456), 23-31. DOI: 10.36119/15.2023.11.3.
  • [12] HOMER software. Available online: https://www.homerenergy.com/ [accessed on 22 Jun. 2023].
  • [13] CoolProp library. Available online: http://www.coolprop.org/ [accessed on 16 Jun. 2023].
  • [14] Kharel S.; Shabani B.: Hydrogen as a long-term large-scale energy storage solution to support renewables. Energies 2018, 11(10), 2825. DOI:10.3390/en11102825.
  • [15] Kalinci Y.; Hepbasli A.; Dincer I.: Techno-economic analysis of a stand-alone hybrid renewable energy system with hydrogen production and storage options. Int. J. Hydrogen Energy 2015, 40, 7652-64. DOI:10.1016/j.ijhydene.2014.10.147.
  • [16] Acakpovi A.; Adjei P.; Nwulu N.; Asabere N.Y.: Optimal hybrid renewable energy system: A comparative study of wind/hydrogen/fuel-cell and wind/battery storage. Journal of Electrical and Computer Engineering 2020, 1756503. DOI:10.1155/2020/1756503.
  • [17] Shabani B.; Andrews J.: Standalone solar-hydrogen systems powering fire contingency networks. Int. J. Hydrog. Energy 2015, 40, 5509-17. DOI:10.1016/j.ijhydene.2015.01.183.
  • [18] Ammari C.; Belatrache D.; Touhami B.; Makhloufi S.: Sizing, optimization, control and energy management of hybrid renewable energy system - A review. Energy and Built Environment 2021 (In Press). DOI:10.1016/j.enbenv.2021.04.002.
  • [19] Nguyen N.T.; Matsuhashi R.; Vo T.T.B.C.: A design on sustainable hybrid energy systems by multi-objective optimization for aquaculture industry. Renewable Energy 2021, 163, 1878-94. DOI:10.1016/j.renene.2020.10.024.
  • [20] Luta D.N.; Raji A.K.: Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications, Energy 2019, 166, 530-40. DOI:10.1016/j.energy.2018.10.070.
  • [21] Longe O.M.; Rao N.D.; Omowole F.; Oluwalami A.S.; Oni O.T.: A case study on off-grid microgrid for universal electricity access in the Eastern Cape of South Africa. Int. J. Energy Engineering 2017, 7(2), 55-63. DOI:10.5923/j.ijee.20170702.03.
  • [22] Mohamed M.A.; Eltamaly A.M.; Alolah A.: PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems. PLOS ONE 2016, 11(8), e0159702. DOI:10.1371/journal.pone.0159702.
  • [23] Mongird K.; Viswanathan V.; Alam J.; Vartanian C.; Sprenkle V.: 2020 grid energy storage technology cost and performance assessment. Pacific Northwest National Laboratory Technical Report, DOE/PA-0204, Richland, WA 99354, US, 2020.
  • [24] Whiston M.M.; Azevedo I.; Lister S.; Whitefoot K.S.; Samaras C.; Whitacre J.F.: Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles. PNAS 2019, 116(11), 4899-904. DOI:10.1073/pnas.1804221116.
  • [25] Parks G.; Boyd R.; Cornish J.; Remick R:. Hydrogen station compression, storage, and dispensing technical status and costs. NREL/BK-6A10-58564 Technical Report, NREL: Denver West Parkway Golden, CO, US, 2014.
  • [26] Nedstack PemGen CHP-FCPS-100 brochure. Available online: https://nedstack.com/en/pemgen-solutions/stationary-fuel-cell-power-systems/pemgen-chp-fcps-100 [accessed on 30 Jun. 2023].
  • [27] DOE technical targets for hydrogen delivery. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-delivery [accessed on 28 Jun. 2023].
  • [28] Gorre J.; Ruoss F.; Karjunen H.; Schaffert J.; Tynjälä T.: Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation. Applied Energy 2020, 257, 113967. DOI:10.1016/j.apenergy.2019.113967.
  • [29] Wiser R.; Bolinger M.; Lantz E.J.: Assessing wind power operating costs in the United States: Results from a survey of wind industry experts. Renewable Energy Focus 2019, 30, 46-57. DOI:10.1016/j.ref.2019.05.003.
  • [30] Steffen B.; Beuse M.; Tautorat P.; Schmidt T.S.: Experience curves for operations and maintenance costs of renewable energy technologies. Joule 2020, 4, 359-75. DOI:10.1016/j.joule.2019.11.012.
  • [31] Act of 27 January 2022 amending the act on renewable energy sources and the act amending the act on renewable energy sources and certain other acts (in Polish). Available online:https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20210000610 [accessed on 16 Jun. 2023].
  • [32] Reference energy prices (in Polish). Available online: https://www.ure.gov.pl/pl/oze/aukcje-oze/ceny-referencyjne/6539,Ceny-referencyjne.html [accessed on 08 Jun. 2023].
  • [33] Tazay A.: Techno-Economic Feasibility Analysis of a Hybrid Renewable Energy Supply Options for University Buildings in Saudi Arabia. Open Engineering 2021, 11, 39-55. DOI: 10.1515/eng-2021-0005.
  • [34] Annual price indices of consumer goods and services since 1950 published by Central Statistical Office (in Polish). Available online: https://stat.gov.pl/obszary-tematyczne/ceny-handel/wskazniki-cen/wskazniki-cen-towarow-i-uslug-konsumpcyjnych-pot-inflacja-/roczne-wskazniki-cen-towarow-i-uslug-konsumpcyjnych/ [accessed on 18 Apr. 2022].
  • [35] Basic NBP interest rates in 1998-2022 (in Polish). Available online: https://www.nbp.pl/home.aspx?f=/dzienne/stopy_archiwum.htm [accessed on 26 Jun. 2023].
  • [36] ENERGA standard price lists for business (in Polish). Available online: https://www.energa.pl/ [accessed on 16 Jun. 2023].
  • [37] Thomanssen M.: Cost reduction and performance increase of PEM electrolysers, Programme Review Days, Brussels, Belgium, 21-22 Nov. 2016.
  • [38] MATLAB Software. Available online: https://www.mathworks.com/products/matlab.html [accessed on 04 Jul. 2023].
  • [39] National Power System Report 2021 (in Polish). Avaliable online: https://www.pse.pl/dane-systemowe/funkcjonowanie-kse/raporty-roczne-z-funkcjonowania-kse-za-rok/raporty-za-rok-2021#r6_1 [accessed on 04 Jul. 2023].
  • [40] National Centre for Emissions Management. Emission indices of CO2, SO2, NOx, CO and total dust for electricity based on the information greenhouse gases and other substances for 2020 (in Polish). Available online: https://www.kobize.pl/pl/file/wskazniki-emisyjnosci/id/171/wskazniki-emisyjnosci-dla-energii-elektrycznej-za-rok-2020-opublikowane-w-grudniu-2021-r [accessed on 7 Jul. 2023].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3186223a-18be-4947-9b0f-2bd3c5d86de8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.