Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Creep and fatigue properties of two-phase titanium alloys show strong dependence on microstructure, especially morphology of the α and β phases which can be controlled to certain extent by proper selection of hot working and heat treatment conditions. In the paper the creep behaviour of Ti-6Al-2Mo-2Cr alloy (VT3-1) at elevated temperature was modelled. Finite element analyses of primary creep stage were carried out taking into account some microstructural features of the two-phase alloy that were included in the physical model and different properties of α and β phases. In order to verify results of calculations distinct types of microstructure were developed in the alloy by heat treatment and creep tests were carried out at elevated temperature (450°C) at various stress levels. Based on the FEM simulations the effect of changes of some microstructure features on primary creep strain development was estimated.
Wydawca
Czasopismo
Rocznik
Tom
Strony
683--688
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszow, Poland
autor
- Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszow, Poland
Bibliografia
- [1] C. Leyens, M. Peters, eds, Titanium and Titanium Alloys, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2003.
- [2] G. Lütjering, J. C. Williams, Titanium, Springer-Verlag, Berlin Heidelberg 2007.
- [3] D. Banerjee, J. C. Williams, Acta Materialia 61, 844-879 (2013).
- [4] S. Malinov, W. Sha, Materials Science and Engineering A365, 202-211 (2004).
- [5] Y. Sun, W. Zeng, Y. Han, X. Ma, Y. Zhao, P. Guo, G. Wang, M.S. Dargusch, Computational Materials Science 60, 239-244 (2012).
- [6] J. Thomas, M. Groeber, S. Ghosh, Materials Science and Engineering A553, 164-175 (2012).
- [7] J.R. Mayeur, D.L. McDowell, International Journal of Plasticity 23, 1457-1485 (2007).
- [8] L. Wang, R.I. Barabash, Y. Yang, T.R. Bieler, M.A. Crimp, P. Eisenlohr, W. Liu, G.E. Ice, Metallurgical and Materials Transactions 42A, 626-635 (2011).
- [9] N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Materials and Design 63, 336-344 (2014).
- [10] J. Adamus, P. Lacki, Archives of Metallurgy and Materials 57, 4, 1247-1252 (2012).
- [11] C. Pein, C. Sommitsch, Computational Materials Science 52 73-76 (2012).
- [12] R. Dobosz, M. Lewandowska, K. J. Kurzydlowski, Computational Materials Science 53, 286 293 (2012).
- [13] G. Srinivasu, R. N. Rao, T. K. Nandy, D.K. Gupta., Materials and Design 46, 8-15 (2013).
- [14] W. J. Harrison, M. T. Whittaker, R. J. Lancaster, Materials Science & Engineering A574, 130 136 (2013).
- [15] R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, Journal of Materials Processing Technology 133, 84-89 (2003).
- [16] ADINA - Theory and Modeling Guide, ADINA R&D Inc., Watertown 2012.
- [17] J Sieniawski, Phase transformations and potentials for microstructure development in multi component titanium alloys containing Al, Mo, V and Cr, Publishing house of Rzeszow University of Technology, Rzeszow 1985 (in Polish).
- [18] R.J. Morrissey, D.L. McDowell, T. Nicholas, International Journal of Fatigue 23, S55-S64 (2001).
- [19] S. Ankem, H. Margolin, C.A. Greene, B.W. Neuberger, P.G. Oberson, Progress in Materials Science 51, 632-709 (2006).
- [20] J. Peng, C-Y. Zhou, Q. Dai, X-H. He, Materials Science & Engineering A611, 123-135 (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31852c6c-afc3-4396-80ed-78df95a14e9a