Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Changes in the resistance of single crystals of p-type conductivity silicon under the action of mechanical loading were investigated in this research. Also, non-irradiated and pre-irradiated X-rays experimental samples were studied. It was found that at small deformation values when they are at the initial stage of the action of elastic deformation, a section forms and increases, on which the resistance practically does not depend on the applied mechanical load. In irradiated crystals, at small deformation values, electron generation processes dominate, which then recombine with the main carriers – holes. The consequence of such processes is the appearance of a maximum increase in electrical resistance at the initial stage of elastic deformation of experimental samples irradiated with X-rays. Charge carrier generation processes begin to dominate with further deformation. Such processes occur as a result of the release of acceptor centers from other complex defects, which are destroyed during the deformation of the Si crystal and captured by mobile dislocations. Thus, the processes of generation of charge carriers prevail over the processes of gettering and, accordingly, a mechano-stimulated decrease in the electrical resistance of p-Si samples occurs.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
226--231
Opis fizyczny
Bibliogr. 18 poz., fig., tab.
Twórcy
autor
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., Lviv-79017, Ukraine
autor
- The Faculty of Mechanical Engineering and Aeronautics, Department of Aerospace Engineering, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
autor
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., Lviv-79017, Ukraine
autor
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., Lviv-79017, Ukraine
autor
- nstitute of Materials Engineering, College of Natural Sciences, University of Rzeszow, ul. Pigonia 1, 35-310 Rzeszów, Poland
autor
- Department of Sensor and Semiconductor Electronics, Ivan Franko National University of Lviv, 107, Tarnavskoho Str., Lviv-79017, Ukraine
Bibliografia
- 1. Zhanga X., Wan Y., Bullock J., Allen T., Cuevas A. Low resistance Ohmic contact to p-type crystal-line silicon via nitrogen-doped copper oxide films. Applied Physics Letter 2016; 109: 052102. https://doi.org/10.1063/1.4960529.
- 2. Yogi P., Poonia D., Yadav P., Mishra S., Saxena S.K., Roy S., Sagdeo R., Kumar R. Tent-Shaped Surface Morphologies of Silicon: Texturization by Metal Induced Etching. Silicon 2018; 10: 2801. https://link.springer.com/article/10.1007/s12633–018–9820–5.
- 3. Gaidar G.P., Pinkovska M.B., Starchyk M.I. Radiation-induced effects in silicon. Problems of Atomic Science and Technology 2019; 5: 35. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=50083026.
- 4. Li S., Gao Y., Fan R., Li D., Yang D. Room-temperature near-infrared electroluminescence from boron-diffused silicon p-n-junction diodes. Frontiers in Materials. Optics and Photonics 2015; 2(8). https://doi.org/10.3389/fmats.2015.00008.
- 5. Zhang J., Fretwurst E., Klanner R., Perrey H., Pintillie I., Poehlsen T., Schwandt J. Study of X-ray radiation damage in silicon sensors. Journal of Instrumentation 2011; 6: C11013. https://iopscience.iop.org/article/10.1088/1748–0221/6/11/C11013/pdf.
- 6. Shrestha S., Kawahito S., Kamehama H., Nakanishi S., Yasutomi K., Kagawa K., Teranishi N., Takeda A., Tsuru T.G., Kurachi I., Arai Y. A silicon-on-insulator-based dual-gain charge-sensitive pixel detector for low-noise X-ray imaging for future astronomical satellite missions. Sensors 2018; 18, 1789. https://doi.org/10.3390/s18061789.
- 7. Iniewski K. Radiation Effects in Semiconductors (Boca Raton: CRC Press, 2011). https://doi.org/10.1201/9781315217864.
- 8. Kharchenko V.A. Getters in silicon. Modern Electronic Materials 2019; 5(1). https://doi.org/10.3897/j.moem.5.1.38575.
- 9. Slobodzyan D., Kushlyk M., Lys R., Shykorjak J., Luchechko A., Żyłka M., Żyłka W., Shpotyuk Y., Pavlyk B. Radiative and magnetically stimulated evolution of nanostructured complexes in silicon surface layers. Materials 2022; 15: 4052. https://doi.org/10.3390/ma15124052.
- 10. Makara V.A., Steblenko L.P., Obukhovskii V.V., Gorid’ko N.Y., Lemeshko V.V. Effect of electric current on starting characteristics and activation parameters of short dislocations in Si crystals. Physics of the Solid State 2000; 42: 877. https://link.springer.com/article/10.1134%2F1.1131305.
- 11. Pavlyk B.V., Lys R.M., Didyk R.I., Shykoryak J.A. Features of the uniaxial elastic deformation of Xray-irradiated p-Si crystals. Semiconductors 2015; 49: 638. https://link.springer.com/article/10.1134/S1063782615050206.
- 12. Zhukavin R.K., Pavlov S.G., Pohl A., Abrosimov N.V., Riemann H., Redlich B., Hübers H.-W., Shastin V.N. Stimulated terahertz emission of Bismuth donors in uniaxially strained silicon under optical intracenter excitation. Semiconductors 2019; 53: 1255. https://link.springer.com/article/10.1134/S1063782619090288.
- 13. Lys R., Pavlyk B., Didyk R., Shykorjak J. Change in surface conductivity of elastically deformed p-Si crystals irradiated by X-rays. Nanoscale Research Letters 2017; 12: 440. https://doi.org/10.1186/s11671–017–2210-x.
- 14. Lys R., Pavlyk B., Didyk R., Shykorjak J., Karbovnyk I. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals. Applied Nanoscience 2018; 8: 885. https://doi.org/10.1007/s13204–018–0707-y.
- 15. Gorin A.E., Gromova G.V., Ermakov V.M., Kogutyuk P.P., Kolomoets V.V., Nazarchuk P.F., Panasjuk L.I., Fedosov S.A. Silicon p-MOS and n-MOS transistors with uniaxially strained channels in electronic device nanotechnology. Ukrainian Journal of Physics 2011; 56: 917. http://archive.ujp.bitp.kiev.ua/files/journals/56/9/560907p.pdf.
- 16. Thompson S.E., Sun G., Choi Y.S., Nishida T. Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Transactions on Electron Devices 2006; 53: 1010. https://doi.org/10.1109/TED.2006.872088.
- 17. Steblenko L.P., Naumenko S.N., Kurylyuk A.N., Krit O.N., Kobzar Y.L., Kalinichenko D.V., Kogutyuk P.P. Features of changes in the microhardness of silicon crystals exposed to low-energy X-ray radiation. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 2015; 9: 957. https://doi.org/10.1134/S1027451015030349.
- 18. Lys R., Pavlyk B., Didyk R., Shykorjak J., Slobodzyan D., Kushlyk M., Żyłka W. Mathematical model of mechanically stimulated changes of irradiated silicon crystals’ surface conductivity. Applied Nanoscience 2020; 10: 4767. https://doi.org/10.1007/s13204–020–01300–6
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-317f6d28-c9d9-4f82-ac2f-81ed7cb2a97a