PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the crack width of beams reinforced with FRP bars

Identyfikatory
Warianty tytułu
PL
Analiza zarysowania belek zbrojonych prętami FRP
Języki publikacji
EN
Abstrakty
EN
The paper investigates and compares a selected issue of Serviceability Limit State (SLS) of simply supported reinforced concrete (RC) beams subjected to various values of flexural stresses. Characteristic crack widths of beams reinforced with various types of bars were calculated. Beams reinforced with Glass Fiber Reinforced Polymer (GFRP), Carbon Fiber Reinforced Polymer (CFRP) and Aramid Fiber Reinforced Polymer (AFRP) were examined. The computational analysis of beams reinforced with FRP bars was based on Italian guideline for the design (CNR-DT 203/2006) and in accordance with the EC2 (EN 1992-11:2004). Based on the conducted analysis, the effect of changing the service live load on the increase in crack width was presented.
PL
W artykule omówiono i porównano wybrane zagadnienie Stanu Granicznego Użytkowalności (SLS) swobodnie podpartej jednoprzęsłowej zbrojonej belki betonowej, poddanej różnym wartościom naprężeń zginających. W celu przeprowadzenia analizy dokonano obliczeń szerokości rozwarcia rys prostopadłych do osi belek zbrojonych prętami kompozytowymi. Do obliczeń przyjęto pręty zbrojeniowe polimerowe wzmocnione włóknem szklanym (GFRP –Glass Fiber Reinforced Polymer), węglowym (CFRP – Carbon Fiber Reinforced Polymer) oraz aramidowym (AFRP – Aramid Fiber Reinforced Polymer). Obliczenia wytrzymałościowe belek zbrojonych prętami FRP (Fiber Reinforced Polymer) wykonano zgodnie z włoskimi zaleceniami projektowymi (CNR-DT 203/2006) oraz w oparciu o obowiązującą normę europejską Eurokod 2 (PN-EN 1992-1-1:2008). Na podstawie przeprowadzonej analizy przedstawiono wpływ zmiany obciążenia użytkowego na wzrost szerokości rozwarcia rysy.
Rocznik
Strony
163--168
Opis fizyczny
Bibliogr. 20 poz., tab., wz., wykr.
Twórcy
autor
  • Department of Concrete Structures and Geotechnics, Faculty of Civil Engineering, Czestochowa University of Technology
autor
  • Department of Concrete Structures and Geotechnics, Faculty of Civil Engineering, Czestochowa University of Technology
autor
  • Department of Structures and Bridges, Faculty of Civil Engineering, University of Žilina
Bibliografia
  • [1] Brózda K., Major M., Selejdak J., Computational Analysis of Serviceability Limit State of Beams Reinforced with FRP Bars, 23th International Conference Engineering Mechanics, Svratka, 15–18 May 2017, 218–221.
  • [2] Brózda K., Selejdak J., Koteš P., The Analysis of Beam Reinforced with FRP Bars in Bending, Procedia Engineering, vol. 192, 2016, 64–68.
  • [3] Bywalski C., Drzazga M., Kamiński M., Obliczanie zginanych elementach zbrojonych prętami FRP, Materiały budowlane, vol. 6, 2014, 72–73.
  • [4] Drzazga M., Kamiński M., Pręty kompozytowe FRP jako główne zbrojenie zginanych elementów betonowych – przegląd zaleceń i efektywność projektowania, Przegląd budowlany, vol. 3, 2015, 22–28.
  • [5] Brózda K., Selejdak J., Analysis of FRP Bars Used as Reinforcement in Concrete Structures, Production Engineering Archives, vol. 12(3), 2016, 2–4.
  • [6] Ulewicz R., Mazur M., Fatigue testing structural steel as a factor of safety of technical facilities maintenance, Production Engineering Archives, vol. 1(1), 2013, 32–34.
  • [7] Selejdak J., Ulewicz R., Ingaldi M., The Evaluation of the Use of a Device for Producing Metal Elements Applied in Civil Engineering, 23rd International Conference on Metallurgy and Materials, Brno, 21–23 May 2014, 1882–1888.
  • [8] Lipinski T., Corrosion effect of 20 % NaCl solution on basic carbon structural S235JR steel, 16th International Scientific Conference Engineering for Rural Development, Jelgava, 24–26 May 2017, 1069–1074.
  • [9] Pliszka I., Radek N., Corrosion Resistance of WC–Cu Coatings Produced by Electrospark Deposition, Procedia Engineering, vol. 192, 2017, 707–712.
  • [10] Szczotok A., Nawrocki J., Pietraszek J., The Impact of the Thickness of the Ceramic Shell Mould on the (γ + γ′) Eutectic in the IN713C Superalloy Airfoil Blade Casting, Archives of Metallurgy and Materials, vol. 62(2), 2017, 587–593.
  • [11] Barris C., Torres L., Miàs C., Vilanova I., Design of FRP reinforced concrete beams for serviceability requirements, Journal of Civil Engineering and Management, vol. 18(6), 2012, 843–857.
  • [12] Gravina R.J., Smith S.T., Flexural behavior of indeterminate concrete beams reinforced with FRP bars, Engineering Structures, vol. 30, 2008, 2370–2380.
  • [13] Toutanji H., Deng Y., Deflection and crack–width prediction of concrete beams reinforced with glass FRP rods, Construction and Building Materials, vol. 17, 2003, 69–74.
  • [14] CNR-DT 203/2006. Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars.
  • [15] ACI 440.1R-06. Guide for the design and construction of concrete reinforced with FRP bars.
  • [16] CSA-S806-02. Design and Construction of Building Components with Fibre Reinforced Polymers.
  • [17] JSCE, Recommendation for design and construction of concrete structures using continuous fiber reinforcing materials, Concrete Engineering Series No. 23, 1997.
  • [18] Polprek Sp. z o.o. product data sheet, available at: www. polprek.pl (22.12.2016).
  • [19] Sireg Geotech S.r.l. product data sheet, available at: www.sireggeotech.it/en (22.12.2016).
  • [20] EN 1992-1-1:2004. Design of concrete structures. General rules and rules for buildings.
Uwagi
EN
Section "Mechanics"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-317f276c-3431-415f-a805-9e5ff437c8b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.