PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effectiveness of half masks for respiratory health protection in coal mining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An improved procedure is presented for testing the level of respiratory health protection and comfort of half masks currently used in coal mining and similar industries. This will allow companies to make the best choice of such equipment for their workers. Half masks used by one Slovenian (PV) and two Polish (JSW and PPG) coal mining companies were tested in terms of filtering efficiency, especially for PM2.5, perceived effectiveness, comfort and ease of use. Filtering efficiency was determined by analysing filters from masks used in underground operations for the levels and sizes of trapped coal dust particles and by carrying out experiments employing a specially developed laboratory test stand. The latter incorporated a replica human head and a climatic chamber to simulate the humidity of exhaled air during mining activities. To determine the comfort and utility of the half masks, selected miners were asked to fill in questionnaires. The main results of these studies were that, in the interest of miners' health, and for those working in other high dust environments, the quality of the half-mask should be assessed on the basis of workplace and stand tests. These are complementary and both should be included to ensure the correct assessment of the half masks. For the masks supplied by the mentioned mining companies, their filtering efficiency for PM2.5, as determined using the test stand, was excellent at over 99%.
Czasopismo
Rocznik
Tom
Strony
2--17
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., zdj.
Twórcy
  • KOMAG Institute of Mining Technology, 44-100 Gliwice, Pszczyńska 37, Poland
  • Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9FE, UK
  • Camborne School of Mines, University of Exeter, Penryn, Cornwall TR10 9FE, UK
  • KOMAG Institute of Mining Technology, 44-100 Gliwice, Pszczyńska 37, Poland
Bibliografia
  • [1] Li D., Li Y., Li G. and Zhang Y., 2019. Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs. PNAS, 116 (7) 2488-2493.
  • [2] WHO, 2013. Health effects of particulate matter: Policy implications for countries in eastern Europe, Caucasus and central Asia (ISBN 978 92 890 0001 7).
  • [3] Liu C., Chen R., Sera F., Vicedo-Cabrera A.M., Guo Y., Tong S., Coelho M.S.Z.S., Saldiva P.H.N., Lavigne E., Matus P., Valdes O.N., Osorio Garcia S., Pascal M., Stafoggia M., Scortichini M., Hashizume M., Honda Y., Hurtado-Diaz M., Cruz J., Nunes B., Teixeria J.P., Kim H., Tobias A., Iniguez C., Forsberg B., Astrom C., Ragettli M.S., Guo Y.-L., Chen B.Y., Bell M.L., Wright C.Y., Scovronick N., Garland R.M., Milojevic A., Kysely J., Urban A., Orru H., Indermitte E., Jaakkola J.J.K., Ryti N.R.I., Katsouyanni K., Analitis A., Zanobetti A., Schwartz J., Chen J., Wu T., Cohen A., Gasparrini A., Kan H., 2019. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med., 381, pp. 705-715.
  • [4] Moreno T., Trechera P., Querol X. et al.: Trace element fractionation between PM10 and PM2.5 in coal mine dust: Implications for occupational respiratory health. International Journal of Coal Geology 2019. 203, pp. 52-59.
  • [5] Kolahi, H., Jahangiri M., Ghaem H et al.: Evaluation of respiratory protection program in petrochemical industries: application of analytic hierarchy process. Safety And Health At Work 2018. 1, pp. 95-100.
  • [6] Robertsen O., Siebler F., Eisemann M.: Predictors of respiratory protective equipment use in the norwegian smelter industry: the role of the theory of planned behavior, safety climate, and work experience in understanding protective behaviour. Frontiers In Psychology 2019. 9, article number 1366.
  • [7] Meadwell J., Paxman-Clarke L., Terris, D. et al.: In search of a performing seal: rethinking the design of tight-fitting respiratory protective equipment facepieces for users with facial hair. Safety And Health At Work 2019. 3, pp. 275-304.
  • [8] Han DH., Park Y., Woo JJ. et al.: Effect of the tight fitting net on fit performance i single use filtering facepieces for Koreans. Industrial Health 2018. 1, pp.78-84.
  • [9] Seo Y., Vaughan J., Quinn T.D.: The effect of inspiratory resistance on exercise performance and perception in moderate normobaric hypoxia. High Altitude Medicine & Biology 2017. 4, pp. 417-424.
  • [10] European Standard EN 149:2001 + A1: 2010 Respiratory protective devices - Filtering half masks to protect against particles - Requirements, testing, marking
  • [11] Rajan B.: Work place protection factors for respiratory protective equipment - a new approach. In: 9th International Conference on Occupational Respiratory Diseases Location: Kyoto, Japan, Advances In: The Prevention Of Occupational Respiratory Diseases Book Series: International Congress Series. 1153 Pages: 1142-1144 .
  • [12] Stacey P., Thorpe A., Mogridge R.: A new miniature respirable sampler for in-mask sampling: part 1- particle size selection performance. Annals Of Occupational Hygiene 2016. 9., pp. 1072-1083.
  • [13] Davidson C., Green C. F., Panlilio A.L. et al.: method for evaluating the relative efficiency of selected N95 respirators and surgical masks to prevent the inhalation of airborne vegetative cells by healthcare personnel. Indoor And Built Environment 2011, 2, pp. 265-277.
  • [14] Dellweg D., Quast R., Haidl P.: Investigation of the filter performance in sample of standardised particlefiltering half masks. Pneumologie 2021, 75(3), pp. 203-213.
  • [15] Clayton M.P, Bancroft B., Rajan B.: A review of assigned protection factors of various types and classes of respiratory protective equipment with reference to their measured breathing resistances. Annals Of Occupational Hygiene 2020. 6, pp. 537-547.
  • [16] Vaughan N., Rajan-Sithamparanadarajah, B., Atkinson R. et al.: Evaluation of RPE-Select: a web-based respiratory protective equipment selector tool. Annals Of Occupational Hygiene 2016. 7, pp. 900-912.
  • [17] Myong J.P., Byun J., Cho Y. et al.: The education and practice program for medical students with quantitative and qualitative fit test for respiratory protective equipment. Industrial Health 2016. 2, pp. 177-182.
  • [18] Salazar M.K., Connon C., Takaro T.K. et al.: An evaluation of factors affecting hazardous waste workers' use of respiratory protective equipment. AIHAJ 2001. 2, pp. 236-245.
  • [19] Thanh B.Y.L., Laopaiboon M., Koh D. et al.: Behavioural interventions to promote workers' use of respiratory protective equipment. Cochrane Database of Systematic Reviews 2016. 12.
  • [20] Bell N., Vaughan N.P., Morris L. et al.: An Assessment of Workplace Programmes Designed to Control Inhalation Risks Using Respiratory Protective Equipment. Annals Of Occupational Hygiene 2012. 3, pp. 350-361.
  • [21] Graveling R., Sanchez-Jimenez A., Lewis C. et al.: Protecting respiratory health: what should be the constituents of an effective rpe programme? Annals Of Occupational Hygiene 2011. 3, pp. 230-238
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3177c624-99fe-4431-96c5-1048131c3a65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.