PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tlenek grafenu - nanomateriał do wytwarzania półprzepuszczalnych membran

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Graphene oxide - the nanomaterial for manufacturing semipermeable membranes
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono metody syntezy membran kompozytowych opartych na grafenie, ich właściwości i możliwości aplikacyjne. Omówiono również funkcje chemiczne i fizyczne pochodnych grafenu, które wpływają na efektywność odsalania wody i właściwości anty-foulingowe. Przedstawiono metody funkcjonalizacji grafenu i jego pochodnych, zwiększające stabilność warstwy aktywnej, retencję soli, przepuszczalność wody, oraz mechanizm transportu jonów i zmniejszania foulingu. Membrany wykonane z tych materiałów pozwalają na osiągnięcie znacznie wyższego strumienia wody/permeatu niż stosowane obecnie poliamidowe cienkowarstwowe membrany kompozytowe.
EN
In this paper methods of synthesis of membranes containing graphene and its derivatives, their properties and application areas are discussed. Chemical and physical functions of graphene and graphene oxide influencing water desalination efficiency and antifouling properties are also described. The article shows the methods of graphene functionalization and its derivatives, increasing the stability of the active layer, salt retention, permeability of water and the ion transport mechanism and reduction of fouling. Membranes made of these materials enable to obtain significantly higher water/permeate fluxes than in the case of currently used thin film composite polyamide membranes.
Czasopismo
Rocznik
Tom
Strony
40--44
Opis fizyczny
Bibliogr. 55 poz., fot., rys.
Twórcy
  • Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk, Zabrze
  • Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie
Bibliografia
  • [1] March H., Saur D., Rico-Amors A. M.(2014). The end of scarcity? Water desalination as the new cornucopia for Mediterranean Spain. J Hydrol., 519, 2642-2651.
  • [2] Schallenberg-Rodriguez J, Veza JM, Blanco-Marigorta A. (2014). Energy efficiency and desalination in the Canary Islands. Renew Sustain Energy Rev. 40, 741-748.
  • [3] Fane, C. Tang, R. Wang R. (2011). Chap. 4. Water Quality Enngenering. P. Wilderer (Eds.), Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise on Water Science, 301-335. Elsevier Science.
  • [4] Cohen-Tanugi D., McGovern R. K., Dave S. H., Lienhard J. H., Grossman J. C. (2014). Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci., 7, 1134-1141.
  • [5] Werber J. R., Deshmukh A., Elimelech M. (2016). The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett., 3, 112-120.
  • [6] Das R, Ali ME, Abd Hamid SB, Ramakrishna S, Chowdhury ZZ. (2014). Carbon nanotube membranes for water purification: a bright future inwater desalination. Desalination, 336, 97-109.
  • [7] Goh PS, Ismail AF, Ng BC., (2013). Carbon nanotubes for desalination: performance evaluation and current hurdles. Desalination, 308, 2-14.
  • [8] Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci., 450, 249-256.
  • [9] Das R, Abd Hamid SB, AliME, Ismail AF, Annuar MSM, Ramakrishna S. (2014). Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination, 354, 160-179.
  • [10] Song X., Wang L., Tang C. Y., Wang Z., Gao C. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalination, 369, 1-9.
  • [11] Xue S.-M., Xu Z.-L., Tang Y.-J., Ji C.-H. (2016). Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs). ACS Appl. Mater. Interfaces, 8, 19135-19144.
  • [12] Tian M., Wang R., Goh K., Liao Y., Fane A. G. (2015). Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes. J. Membr. Sci., 486, 151-160.
  • [13] Khalid A., Al-Juhani A. A., Al-Hamouz O. C., Laoui T., Khan Z., Atieh M. A.(2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination. Desalination, 367, 134-144.
  • [14] Tian M., Wang Y.-N., Wang R. (2015). Synthesis and characterization of novel high-performance thin film nanocomposite (TFN) FO membranes with nanofibrous substrate reinforced by functionalized carbon nanotubes. Desalination, 370, 79-86.
  • [15] Goh P. S., Ismail A. F., (2015). Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination, 356, 115-28.
  • [16] Hu M., Mi B. (2013). Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol., 47, 3715-3723.
  • [17] Gao Y., Hu M., Mi B. (2014). Membrane Surface modification with TiO2–graphene oxide for enhanced photocatalytic performance. J. Membr. Sci., 455, 349-356.
  • [18] Hung W.-S., An Q.-F., De Guzman M., Lin H.-Y., Huang S.-H., Liu W.-R., Hu C.-C., Lee K.-R., Lai J.-Y. (2014). Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic Graphene oxide. Carbon, 68, 670-677.
  • [19] Ma X.-H., Yang Z., Yao Z.-K., Xu Z.-L., Tang C. Y. (2017). A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. J. Membr. Sci. 525, 269-276.
  • [20] Abraham J., Vasu K. S., Williams C. D., Gopinadhan K., Su Y., Cherian C. T., Dix J., Prestat E., Haigh S. J., Grigorieva I. V., Carbone P., Geim A. K., Nair R. R. (2017). Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546-545.
  • [21] Hegab H. M., Zou L. (2015). Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification. J. Memb Sci., 484, 95-106.
  • [22] Blankenburg S.M.L., Bieri M., Fasel R., Mullen K., Pignedoli C. A., Passerone D. (2010). Porous graphene as an atmospheric nanofilter. Small, 6, 2266-2271.
  • [23] Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314.
  • [24] Aghigh A., Alizadeh V., Wong H. Y., Islam Md. S., Amin N., Zaman M. (2015). Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365, 389-397.
  • [25] Wang J., Zhang P., Liang B., Liu Y., Xu T., Wang L., Cao B., Pan K. (2016). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl. Mater. Interfaces, 8, 6211-6218.
  • [26] Joshi R. K., Carbone P., Wang F. C., Kravets V. G., Su Y., Grigorieva I. V., Wu H. A., Geim A. K., Nair R. R. (2014). Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 343, 752-754.
  • [27] Cho W., Lee J.-w., Graphene: Synthesis and Applications, Taylor and Francis, Hoboken, 2011.
  • [28] Daer S., Kharraz J., Giwa A., Hasan S. W. (2015). Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination, 367, 37-48.
  • [29] Perreault F., Tousley M. E., Elimelech M. (2014). Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett., 1, 71-76.
  • [30] Compton O. C., Nguyen S. T. (2010). Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 6, 711-723.
  • [31] Mahmoud K. A., Mansoor B., Mansour A., Khraisheh M. (2015). Functional graphene nanosheets: the next generation membranes for water desalination. Desalination, 356, 208-225.
  • [32] Wang H., Yuan X., Wu Y., Huang H., Peng X., Zeng G., Zhong H., Liang J., Ren M. (2013). Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv. Colloid Interf. Sci., 195-196, 19-40.
  • [33] Songa N., Gao X., Mac Z., Wanga X., Weia Y., Gao C. (2018). A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination, 437, 59-72.
  • [34] Cote L. J., Kim F., Huang J. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131, 1043-1049.
  • [35] Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z., Slesarev A., Alemany L. B., Lu W., Tour J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806-4814.
  • [36] Dreyer D. R., Park S., Bielawski C. W., Ruoff R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39, 228-240.
  • [37] Wang G., Wang B., Park J., Wang Y., Sun B., Yao J. (2009). Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 47, 3242-3246.
  • [38] Alanyalıoğlu M., Segura J. J., Oro-Sole J., Casan-Pastor N. (2012). The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes, Carbon 50, 142-152.
  • [39] Potts J. R., Dreyer D. R., Bielawski C. W., Ruoff R. S. (2011). Graphene-based polymer nanocomposites, Polymer, 52, 5-25
  • [40] Huang H., Ying Y., Peng X. (2014). Graphene oxide nanosheet: an emerging star material for novel separation membranes. J. Mater. Chem. A, 2, 13772-13782.
  • [41] Dikin D. A., Stankovich S., Zimney E. J., Piner R. D., Dommett G.H.B., Evmenenko G., Nguyen S. T., Ruoff R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457-460.
  • [42] Yang Z., Ma X.-H, Tang C. Y. (2018). Recent development of novel membranes for desalination. Desalination, 434, 37-59.
  • [43] Dai H., Xu Z., Yang X. (2016). Water permeation and ion rejection in layer-by-layer stacked graphene oxide nanochannels: a molecular dynamics simulation. J. Phys. Chem. C, 120, 22585-22596.
  • [44] Mi B. (2014). Graphene oxide membranes for ionic and molecular sieving. Science, 343, 740-742.
  • [45] Nicolai A., Sumpter B. G., Meunier V. (2014). Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys., 16, 8646-8654.
  • [46] Wei N., X. Peng, Z. Xu. (2014). Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces, 6, 5877-5883.
  • [47] Huang H., Song Z., Wei N., Shi L., Mao Y., Ying Y., Sun L., Xu Z., Peng X. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979.
  • [48] Nair R., Wu H., Jayaram P., Grigorieva I., Geim A. (2012). Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335, 442-444.
  • [49] Zheng S., Tu Q., Urban J. J., Li S., Mi B. (2017). Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano, 11, 6440-6450.
  • [50] Wei N., Lv C., Xu Z. (2014). Wetting of graphene oxide: a molecular dynamics study. Langmuir, 30, 3572-3578.
  • [51] Chen B., Jiang H., Liu X., Hu X. (2017). Observation and analysis of water transport through graphene oxide interlamination. J. Phys. Chem. C, 121, 1321-1328.
  • [52] Qiu L., Zhang X., Yang W., Wang Y., Simon G. P., Li D. (2011). Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration. Chem. Commun., 47, 5810-5812.
  • [53] Wei Y., Zhang Y., Gao X., Yuan Y., Su B., Gao C. (2016). Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon, 108, 568-575.
  • [54] Liu S., Zeng T. H., Hofmann M., Burcombe E., Wei J., Jiang R., et al. (2011). Antibacterial activity of graphite, graphite oxid , graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano 5, 6971-6980.
  • [55] Ganesh B. M., Isloor A. M., Ismail A. F. (2013). Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination, 313, 199-207.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3176d6c1-23c3-4927-ac92-d9879a271fdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.