PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of a Finite Stochastic Cellular Automaton Toy Model of Earthquakes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Finite version of Random Domino Automaton - a recently proposed toy model of earthquakes - is investigated in detail. Respective set of equations describing stationary state of the FRDA is derived and compared with infinite case. It is shown that for a system of large size, these equations are coincident with RDA equations. We demonstrate a non-existence of exact equations for size N ≥ 5 and propose appropriate approximations, the quality of which is studied in examples obtained within the framework of Markov chains. We derive several exact formulas describing properties of the automaton, including time aspects. In particular, a way to achieve a quasi-periodic like behaviour of RDA is presented. Thus, based on the same microscopic rule - which produces exponential and inverse-power like distributions - we extend applicability of the model to quasi-periodic phenomena.
Czasopismo
Rocznik
Strony
923--956
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • [1] Białecki, M. (2012), Motzkin numbers out of Random Domino Automaton, Phys. Lett. A 376, 45, 3098-3100, DOI: 10.1016/j.physleta.2012.09.022.
  • [2] Białecki, M. (2013), From statistics of avalanches to microscopic dynamics parameters in a toy model of earthquakes, Acta Geophys. 61, 6, 1677-1689, DOI: 10.2478/s11600-013-0111-7.
  • [3] Białecki, M., and Z. Czechowski (2010), On a simple stochastic cellular automaton with avalanches: simulation and analytical results. In:V. De Rubeis, Z. Czechowski, and R. Teisseyre (eds.), Synchronization and Triggering: From Fracture to Earthquake Processes, GeoPlanet: Earth and Planetary Sciences, Springer, Berlin Heidelberg, 63-75, DOI: 10.1007/978-3-642-12300-9_5.
  • [4] Białecki, M., and Z. Czechowski (2013), On one-to-one dependence of rebound parameters on statistics of clusters: exponential and inverse-power distributions out of Random Domino Automaton, J. Phys. Soc. Jpn. 82, 1, 014003, DOI: 10.7566/JPSJ.82.014003.
  • [5] Białecki, M., and Z. Czechowski (2014), Random Domino Automaton: Modeling macroscopic properties by means of microscopic rules. In: R. Bialik, M. Majdanski, and M. Moskalik (eds.), Achievements, History and Challenges in Geophysics, GeoPlanet: Earth and Planetary Sciences, Springer, Int. Publ. Switzerland, 223-241, DOI: 10.1007/978-3-319-07599-0_13.
  • [6] Czechowski, Z., and M. Białecki (2012a), Three-level description of the domino cellular automaton, J. Phys. A: Math. Theor. 45, 15, 155101, DOI: 10.1088/1751-8113/45/15/155101.
  • [7] Czechowski, Z., and M. Białecki (2012b), Ito equations out of domino cellular automaton with efficiency parameters, Acta Geophys. 60, 3, 846-857, DOI: 10.2478/ s11600-012-0021-0.
  • [8] Drossel, B., and F. Schwabl (1992), Self-organized critical forest-fire model, Phys. Rev. Lett. 69, 11, 1629-1632, DOI: 10.1103/PhysRevLett.69.1629.
  • [9] Drossel, B., S. Clar, and F. Schwabl (1993), Exact Results for the One-Dimensional Self-Organized Critical Forest-Fire Model, Phys. Rev. Lett. 71, 23, 3739-3742, DOI: 10.1103/PhysRevLett.71.3739.
  • [10] Malamud, B.D., G. Morein, and D.L. Turcotte (1998), Forest fires: an example of selforganized critical behavior, Science 281, 5384, 1840-1842, DOI: 10.1126/science.281.5384.1840 .
  • [11] Paczuski, M., and P. Bak (1993), Theory of the one-dimensional forest-fire model, Phys. Rev. E 48, 5, R3214-R3216, DOI:10.1103/PhysRevE.48.R3214.
  • [12] Parsons, T. (2008), Monte Carlo method for determining earthquake recurrence parameters from short paleoseismic catalogs: Example calculations for California, J. Geophys. Res. 113, B3, B03302, DOI: 10.1029/2007JB004998.
  • [13] Tejedor, A., S. Ambroj, J.B. Gomez, and A.F. Pacheco (2008), Predictability of the large relaxations in a cellular automaton model, J. Phys. A: Math. Theor. 41, 37, 375102, DOI: 10.1088/1751-8113/41/37/375102.
  • [14] Vazquez-Prada, M., A. Gonzalez, J.B. Gomez, and A.F. Pacheco (2002), A minimalist model of characteristic earthquakes, Nonlin. Process. Geophys. 9, 5-6, 513-519, DOI: 10.5194/npg-9-513-2002.
  • [15] Weatherley, D. (2006), Recurrence interval statistics of cellular automaton seismicity models, Pure Appl. Geophys. 163, 9, 1933-1947, DOI: 10.1007/s00024-006-0105-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3175d41d-97ad-4a8b-92d5-4daad16e9eaa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.