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This paper explores the application of convolutional neural networks in the field of ama-
teur astronomy. The authors have employed the available astronomical datasets to develop
a detector for identifying astronomical objects from the Messier catalog. A concept frame-
work for creating such a detector for astronomical objects using artificial intelligence tools
in the form of a detector based on convolutional neural networks is presented. Augmen-
tation and pre-processing procedures have been used to extend the feature distribution
in the training set. Examples confirming the effectiveness of the proposed detector of
astronomical objects are presented.
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1. Introduction

Object detection belongs to the interdisciplinary scientific area known as
computer vision. It involves the localization and classification of objects in digital
images. The detector requires the submission of a digital image record, which is
subsequently processed by a chosen computational intelligence method. Initially,
computer vision relied on image descriptor techniques to create detection models.
The algorithms using descriptors, which did not incorporate neural networks into
their architecture, relied on representing characteristic features to describe items
being searched for [33].

Currently, the processing and classification of images delivered to the detec-
tors are most often performed by convolutional neural networks (CNNs). In 2010,
during the ImageNet competition, detectors based on architectures containing
CNNs and employing deep learning methods officially surpassed the performance
of traditional image descriptor-based solutions [25].
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CNNs, as we know them today, were first introduced by LeCun et al. [15]
in 1989. They allowed the operation on inputs of one to three dimensions. The
proposed LeNet-5 network was a multilayer CNN using a backpropagation al-
gorithm and was used to classify handwritten digits [16, 17]. A key advantage
of CNNs is the use of a machine learning algorithm performing automatic fea-
ture extraction, eliminating the need to prepare hand-engineered filters. The
successful combined use of non-handcrafted and handcrafted features was pre-
sented in [23]. Krizhevsky et al. [13] proposed AlexNet, a deep CNN architec-
ture, achieving a significant improvement over LeNet-5. Developments in com-
puter vision and CNNs have resulted in the introduction of architectures such as
GoogleNet [34], VGGNet [32], ZFNet [36] and containing residual connections
ResNet architecture [10]. Currently developed models based on CNNs are used
in various computer vision problems such as semantic segmentation [21], object
detection [27], action recognition in video [31], 3D analysis [12], and natural
language processing [6].

The present paper is focused on CNN applications in astronomy. The spec-
trum of CNN applications in modern astronomy includes solar activity prediction,
telescope control systems, pulsar candidate selection, or stellar classification [35].
An example of the application of CNNs can be the problem of morphological clas-
sification of galaxies [7]. A binary classification of a galaxy’s membership in the
group of barred spiral galaxies based on CNNs was proposed in [1].

Professional real-time object tracking systems with long exposure times, such
as the GoTo system [14], have become accessible to amateurs using astronomy
telescopes. A popular tool for amateur astronomy is a telescope equipped with
a CCD camera and a tracking system [37], which allows both real-time observa-
tions and astrophotography.

Amateur astronomy has greatly benefited from advancements in modern tech-
nology and equipment. Nowadays, thanks to the use of advanced tracking sys-
tems and long-exposure CCD cameras instead of a telescope and bare eyes, am-
ateur astronomers possess more observational power than their counterparts in
the 20th century. A major development in improving the observability of astro-
nomical objects has been brought to amateurs by the use of advanced mounts,
such as the equatorial mount [2]. Such mounts allow for precise adjustments
in the telescope’s angles, combined with electric motors operating in two axes,
resulting in a precise tracking system. With such a tracking system, amateur
astronomers can track the movement of celestial objects (effectively compensat-
ing for the Earth’s rotation), allowing them to collect substantially more light
through their telescope’s mirror with the same surface area and optical quality
using CCD cameras.

Deep-sky objects (DSO) listed in the Messier catalog are popular among
amateur astronomers due to their high brightness and angular size. The first
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version of this catalogue was published by Charles Messier in 1774 under the
name the “Catalog of Nebulae and Star Clusters”, which eventually contained
110 objects [22]. This specific number of objects is the subject of the research
presented in this paper, carried out with the aim of establishing proof of concept
for a Messier catalog detector. The authors’ main motivation for developing the
proposed approach was the absence of similar solutions for detecting objects
from the Messier catalog in the existing literature.

The aim of this work was to implement a Messier catalog object detector
using CNN. The Messier object detector can be employed as an addition to the
GoTo control system predominantly employed in amateur telescopes. The GoTo
system is an automatic system that controls the axes of electrical drives. The sys-
tem can work in two modes. The first mode is object tracking, in which the axes
move to keep the observed point in the telescope’s eyepiece, tracking the object
according to the speed of Earth’s rotation. A telescope equipped with the GoTo
system can also work in object search mode. The user enters the code of the
astronomical object and the telescope, based on the GPS location and the cur-
rent date, locates the object. Telescopes equipped with the GoTo system are
often used in astrophotography due to their ability to accurately track objects,
which usually requires a longer exposure time for the camera matrix. Current
matrix technology enables connection to a computer and allows for observation
on a monitor. The proposed detector, integrated into software, enables the detec-
tion of selected astronomical objects within the observed section of the sky using
an astrophotography camera.

A novel approach is the application of machine learning and CNN-based ar-
chitectures to address the problem of detecting DSO objects listed in the Messier
catalog. This is conducted by presenting a proof of concept for the proposed de-
tector.

The paper is organized as follows. Section 2 introduces the idea of CNNs.
Section 3 presents the topic of object detection using the Faster R-CNN archi-
tecture, the applied metrics and the programming library used (TensorFlow).
Section 4 is dedicated to data preparation, including data augmentation tech-
niques and dataset splitting. Section 5 presents the results of the experiments.
The paper concludes with a summary and a bibliography.

2. Convolutional neural networks

CNNs are a specialized class of deep neural networks (DNNs) in which at
least one layer of the network performs a convolution operation, replacing the
general matrix multiplication operation found in classical DNNs [16]. Due to
the functionality of layers in CNNs, they can be divided into [25]:
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• convolutional layers – containing filters responsible for feature extraction;
• subsampling (pooling) layers – ensure tensor size reduction;
• fully connected (FC) layers – responsible for further processing of feature

maps and data classification.
Tensor in CNN denotes an image with a certain number of channels. Convo-

lutional layers, together with pooling layers, are used in CNNs as the feature ex-
tractor, forming the backbone network whose purpose is to extract features from
a provided input image and to reduce the dimensions of the resulting tensor. The
specific number and types of layers influence the feature extraction and tensor
size reduction. An exemplary CNN in the form of VGGNet-16 [32] is presented
in Fig. 1.

Fig. 1. VGGNet-16, an example feature extractor with FC layers.

The tensor supplied to the CNN inputs is subjected to a convolution opera-
tion using filters that are matrices of specific sizes and are initialized at random.
Their weights are modified during learning [25]. The operation of a filter on an
image encoded in three channels (R, G, B) is shown in Fig. 2. The filter with
dimensions of n×n× c, where c denotes the number of channels, is shown sur-
rounded by a dashed line. The filter moves across the channel matrix by a pre-set
step (stride).

Each element of a particular channel of the input tensor of dimension j, k is
subjected to the element convolution operation (*) according to the formula:

R(j−n+1) (k−n+1) = Mj k ∗ Fnn, (1)

where M – the input matrix for given channel, F – the single filter matrix for
given channel.
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Fig. 2. Operation of a single filter.

The depth of the resulting tensor (and consequently the number of feature
maps) is increased by applying multiple filters at the convolution stage. Neurons
in the convolutional layer are not fully connected; instead, the output of each
neuron in the convolutional layer is directed to selected neurons of the subsequent
layer [28].

Subsampling (pooling) layers allow to reduce the dimensions of the resulting
tensor while retaining relevant information [7]. The subsampling layers use non-
overlapping frame shifting across input matrices in all channels to determine
representative elements [4]. An example of the max pooling operation is presented
in Fig. 3.

Fig. 3. Exemplary max pooling operation.

Then, the resulting tensor obtained from the backbone network is passed
to the first FC layer, which requires input data in the form of a vector. To
convert the vector into the input tensor, a flattening operation is performed,
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projecting the tensor into a vector [3]. The task of the FC layers is to appropri-
ate classify the received data features. The last FC layer in CNNs usually has
a softmax activation feature enabling multiclass classification. A characteristic
feature of the softmax function is that the values in the output vector specifying
the probability of belonging to a given category always sum to one [8]. The use
of the softmax function allows the categorical cross-entropy loss to be used as
a cost function [18].

3. Object detection using CNNs

Object detection using CNNs involves several stages of data processing. A de-
tector, understood as a trained CNN prepared to work in a specific environment,
has to detect the presence of a given object in a provided element, typically an
image, precisely locate the detected object, and categorize it into a given cate-
gory [19]. The detector performs the task of object position regression present
in the provided image and its classification. A detector with a sufficiently short
prediction time, for which the data is buffered and provided in real time, can
effectively work in a real-time system [11]. Applied detector solutions incorpo-
rating CNNs can be divided into one-stage and two-stage architectures. One-
stage architectures, such as YOLO [29] or SSD [20], are usually characterized
by their shorter inference times, while two-stage architectures, although slower,
offer greater precision [24].

The CNN architecture used in this work is the faster R-CNN architecture
which as shown in Fig. 4, is an extension of the fast R-CNN concept [9] in which
the selective search algorithm is replaced by a region proposal network (RPN).
The RPN, being a trainable neural network placed after the CNN’s final convo-
lutional layer, allows finding regions that might contain the objects of interest
(regions of interest, RoI). The task of the RPN, being a binary classifier of object
presence, is to determine whether the sought-after object is present in a given

Fig. 4. Network image processing scheme with faster R-CNN architecture.
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region, defined by generated anchor boxes, or whether the area represents a back-
ground.

The cost function LRPN(p, t) for the location is referred to as RPN loss and
consists of classification and regularization cost components [30]:

LRPN(p, t) =
1

Ncls

∑
i

Lcls(pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗i Lreg(ti, t
∗
i ), (2)

where Ncls – the mini-batch size for a single image, which is equal to 256 (the
sum of 128 positive and 128 negative samples extracted from the given image),
Nreg – the number of anchor locations, ∼2400, Lcls(pi, p

∗
i ) – the classification

loss, pi – the output score from the classification branch for anchor i, p∗i – the
ground truth label (1 or 0), Lreg(ti, t

∗
i ) – the regression loss, ti – the output

prediction of the regression layer, t∗i – the regression target, and λ – a parameter
that regulates the contribution of the cost value of a given component to the
total RPN network cost.

The classification loss Lcls is the log loss over two classes (object versus not
object). The regression loss Lreg is activated only if the ground truth p∗i is 1 (an
anchor contains an object).

In the second stage, the goal is to classify the objects and refine their location.
The backbone network and feature map are shared with the RPN. However,
further processing through the FC layer requires a fixed size for each part of the
feature map associated with a given RoI. This effect is achieved by using the RoI
pooling layer. This layer applies max-pooling for each RoI while scaling the
selected part of the feature map to a square and fixed size for all regions. The cost
function L(p, u, tu, v) is defined as [9]:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v), (3)

where p – the predicted class, u – the ground-truth class, tu – the predicted
tuple of localization bounding box, and v – the ground-truth target for localiza-
tion task, Lloc – the loss for localization part of classifier.

The cost of classification is determined by the categorical cross-entropy loss
function, primarily used in cases of multi-class classification [25].

The following metrics were used to assess detection performance [26]:
• recall metric:

recall =
TP

TP + FN
; (4)

• precision metric:

precision =
TP

TP + FP
, (5)

where TP – true positive, FN – false negative, and FP – false positive;



468 W. Beluch, P. Śliwa

• AP (average precision) metric calculates the area under the precision-recall
curve p(r):

AP =

1ˆ

0

p(r)dr, (6)

where p – the value of precision for given classifier, r – the value of recall
for given classifier;

• mAP (mean average precision) metric for a number of classes equal to c:

mAP =
1

c

c∑
i=1

APi; (7)

• AR (average recall) and mAR (mean average recall) metrics:

AR = 2

2ˆ

0.5

r(o)do, (8)

mAR =
1

c

c∑
i=1

ARi, (9)

where o− IoU (intersection over union) value is defined as:

IoU(P,GT ) =
P
⋂
GT

P
⋃
GT

=
P
⋂
GT

P +GT − P
⋂
GT

, (10)

where P – the prediction area, and GT – the ground-truth area.
IoU is a value determined by the prediction of a single bounding box, and it

alone does not determine the quality of the prediction for the entire data set. The
introduction of an IoU threshold into the calculation allows to reject predictions
for which the IoU value is below a given level. The most used IoU thresholds are
0.50 or 0.75. For example, mAPIoU=0.50 denotes the average precision determined
for an IoU threshold of 0.50.

The TensorFlow object detection API [38] was used to implement and train
the detector. This environment is a high-level application programming interface
(API) that provides several models with sample configuration files and guidance
on the operation of the interface. Figure 5 shows a simplified diagram of the
layered structure of TensorFlow implementation. The lowest layer, performing
low-level operations, is implemented in C++ programming language. The higher

Fig. 5. Implementation layers in the TensorFlow environment.
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layer is an implementation of a Python language interface using the lower layer.
The top layer is the Keras library, which automates many operations and pro-
vides users with a high-level library of abstractions to implement (single shot
networks) SSNs. Users can also employ the high-level functional API, which
includes the TensorFlow object detection API. TensorFlow uses the CUDA ar-
chitecture for optimal performance on GPU cores.

4. Data preparation

The aim of the study is to train a high-quality detector for astronomical
objects from the Messier catalog. It is assumed that CNN should perform de-
tecting objects in a fragment of the sky with dimensions 60’× 60’. The necessary
photographs were obtained from the Digitized Sky Survey dataset downloaded
in the FITS astronomical format from the Space Telescope Science Institute
website [39].

The object searched for is provided together with the extent of the patch of
sky on which it occurs. The Hubble Space Telescope (HST) Phase 2 images were
downloaded together with a background covering an area of 30’× 30’, 45’× 45’
or 60’× 60’ squares. The images were converted from FITS to JPG format, and
any corrupted images were removed.

4.1. Data augmentation

The requirement for the training set was to obtain the widest possible fea-
ture distribution, despite using a small number of real images. It should be
emphasized that these augmentations should reflect the characteristics of actual
objects. It is worth mentioning that every object in the Messier catalog has the
same orientation from the perspective of an observer on Earth, so rotational aug-
mentations, for example, are not relevant in this case. Similarly, augmentations
that could change the proportions of a Messier object were not applied, as the
proportions of a Messier object are a characteristic feature of that object and
changing them could lead to recognition being unsuccessful. The main focus was
on preparing a training dataset that reflects different observing conditions, such
as sky contrast and brightness, and to simulate, for example, different levels of
light pollution, the area of observation expressed in arc minutes, the location
of the object and the proportion of the object area to the whole image area.

Since most of the Messier objects appear individually in the image (the excep-
tions might be, for example, M31 and M32, which the authors consider irrelevant
also due to the fact of the significant difference in size between the two objects),
it was decided to treat the Messier object detection as a detection of a single
Messier object within the image. The detection was carried out in terms of object
localization and classification. For this reason, it was necessary to augment the
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existing images with dimensions of 30’× 30’ and 45’× 45’ by adjusting the con-
trast and brightness of the image, as well as the size and location of the ground
truth box. Automatic and random modifications to contrast and brightness were
applied.

The position and size of the ground truth box were modified using the Ran-
domCrop function from the Albumentations library [5]. The function takes an
image with its description and modifies the image by randomly cropping a seg-
ment with specified maximum dimensions and adjusting the ground truth box
description accordingly to the image modification. The probability for the Ran-
domCrop feature was set as 70%, leaving 30% of the features as unmodified.
Finally, the set contains astronomical randomly rotated objects, with randomly
modified brightness and with random size and position of the object within the
element.

On the other hand, the test set was not augmented; each object was located
in the center of each 60’× 60’ image, the same as in the original FITS format.

4.2. Data splitting

A training set of 7000 elements, each with an of original resolution of
1600× 1600 pixels, cropped randomly to different resolutions and a test set of 500
elements, each with resolution 2000× 2000 pixels were generated together with
a description in CSV format. Examples of the training set elements are shown
in Fig. 6. Examples of all 110 classes were included in the training set.

a) b)

Fig. 6. Exemplary elements of the training set with ground truth boxes (the scale in pixels):
a) example of randomly cropped to 1200× 1200 M48 object, b) ultimately also modified to

1600× 1600 M65 object.
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The test set, composed of 500 elements with a resolution of 2000× 2000 pixels,
was generated together with a description in CSV format. The test set was cre-
ated from 60’× 60’ images originally downloaded in FITS format from the web-
site and randomly selected to ensure a representation of 110 classes. Examples
of all 110 classes were included in the test set. Notably, the test set was not aug-
mented, and the location, brightness and contrast of the objects were preserved.

5. Project assumptions and model architecture

For detector accuracy, the prioritization is placed on higher AR metric values
over the mAP. This is because primary concern for the user is whether an existing
object from the Messier catalog is found, making the value of the AR metric
more important parameter than the accuracy of object classification. Therefore,
the mAPIoU=0.50 metric for validating the detector accuracy was chosen as the
most important metric, as the metric mAPIoU=0.75 is too restrictive for amateur
users. The requirements for the quality of the detector model were values of
mAPIoU=0.50 metrics exceeding a value of 90%, while maintaining a value of AR
metrics at not less than 75%. Due to the detector’s operation in a relatively
slow-moving environment, the faster R-CNN architecture was chosen for its high
prediction accuracy.

The training of the CNN was carried out using different feature extractors
as backbones: ResNet50, ResNet101 and Inception v2. An application of resid-
ual connections in ResNet networks [10] eliminates the problem of a vanishing
gradient and time-consuming training in neural networks with many layers.

Residual connections refer to the network layer blocks forming a given ResNet
module. A scheme of a single ResNet block is shown in Fig. 7, where: F(x) –
the residual mapping replacing the original, and x – the input vector. When the
difference between H(x)−F(x) is close to 0, the CNN is taught to skip a given
module through the residual connection, and additionally the weights of the
skipped block are not updated.

identity

weight layer

weight layer

relu

F(x) + x

x

F(x)
x

relu

Fig. 7. Scheme of a single ResNet [10].

Similar advantages can be obtained by using Inception neural networks, in
which the use of filters of various sizes in a single module of convolutional layers
results in a change of the receptive field parameter [34].
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6. Experiments and results

To maximize the level of detail, the dimensions of the input tensor were set
as large as possible given the high resolution of the training and test images.
The maximum acceptable image size, due to the limitation of the VRAM of the
available graphics card, was a square of 1500× 1500. Training hyperparameters
were selected using a validation set separated from the training set, with 10% of
the training set elements were included. The final verification was performed on
the test set.

The main parameters of the Faster R-CNN were set as:
• the value of the learning rate η = 1e-4÷ 2e-6 (experimentally adjusted);
• image_resizer: keep_aspect_ratio_resizer with min_dimension

and max_dimension set to 1500;
• batch_size = 1 (limitation of VRAM);
• fine_tune_checkpoint – pre-trained on the COCO dataset checkpoint;
• num_classes = 110;
• a parameter responsible for the size of the RPN output tensor
first_stage_features_stride = 16;

• first_stage_nms_score_threshold = 0.0;
• first_stage_nms_iou_threshold = 0.7;
• parameters responsible for the first stage (RPN) loss:
first_stage_localization_loss_weight = 2.0,
first_stage_objectness_loss_weight = 1.0;

• parameters responsible for the second stage loss:
second_stage_localization_loss_weight = 2.0,
second_stage_classification_loss_weight = 1.0;

• second_stage_post_processing: batch_non_max_suppression
with score_threshold set to 0.0, iou_threshold = 0.6
and use_class_agnostic_nms parameter activated.

Two different learning rate optimizers have been considered: momentum ac-
tivated (with momentum coefficient equal to 0.9) and Adam (adaptive moment
estimation) to compare their training effectiveness. The parameters such as AR,
mAPIoU=0.50 and mAPIoU=0.75 were considered as the most relevant to the final
user. The dependency of different metrics: AR, mAPIoU=0.50 and mAPIoU=0.75

on the number of training steps is presented in Figs. 8–10, respectively.
Summary results, showing information on the training metrics analyzed as

a function of the number of learning epochs and the number of steps in which
the maximum values were achieved, are presented in Table 1.

As a result of the training six different versions of the detector presented in
Table 1, the requirement mAPIoU=0.50 ≥ 90% was satisfied for all the backbone
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Fig. 8. Dependency of the AR metric on the number of training steps.

Fig. 9. Dependency of the mAPIoU=0.50 metric on the number of training steps.

Fig. 10. Dependency of the mAPIoU=0.75 metric on the number of training steps.
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Table 1. Resulting accuracy metrics for the faster R-CNN detector.

Backbone Learning rate
optimizer

mAPIoU=0.50

[%]
mAPIoU=0.75

[%]
mAP
[%]

AR
[%]

Number
of steps

ResNet50
Adam 91.01 89.40 79.23 80.98 54 350

Momentum 79.89 64.91 55.86 61.79 85 640

ResNet101
Adam 90.87 86.32 72.13 75.49 30 900

Momentum 82.84 70.45 58.93 64.56 54 320

Inception v2
Adam 90.47 87.07 73.83 76.11 49 260

Momentum 62.85 43.53 39.60 46.86 77 020

types used, while only ResNet50 achieved the mAPmetric value higher than 75%.
The results obtained with the Adams optimizer outperformed those obtained
with the momentum optimizer in all cases. Consequently, the ResNet50 with the
Adam optimizer was selected as the best architecture and training configuration
for the problem under analysis. Visualizations of exemplary detections from all
110 actual objects of Messier catalog using the best detector configuration are
shown in Figs. 11–13.

Figures 11–13 demonstrate the model’s good performance on the test set.
Both localization and classification tasks have good quality, which is confirmed
by the visualizations of the detections. The localization task is precise, capturing
only the area that overlaps with the ground-truth. As the classification task is
also solved correctly, the model is resilient to errors due to confusion between
classes.

a) b)

Fig. 11. M9 object detection a) result (confidence 0.99), b) ground truth (100%).
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a) b)

Fig. 12. M105 object detection a) result (confidence 0.74), b) ground truth (100%).

a) b)

Fig. 13. M71 object detection a) result (confidence 0.97), b) ground truth (100%).

7. Conclusion

This paper investigated the application of deep learning solutions to ama-
teur astronomical observing systems. CNNs in the form of the faster R-CNN
architecture were used to create a detector for astronomical objects from the
Messier catalog. Selected configurations of the faster R-CNN architecture were
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tested with different backbone networks and learning optimizers. The tests indi-
cated that in the case under consideration, the ResNet50 network with 50 layers
yielded the highest efficiency and the Adams optimizer gave much better results
than the momentum optimizer.

The use of a larger CNN for a framework such as ResNet101, in this case,
leads to quicker convergence, but with slightly worse performance compared to
ResNet50. This could be attributed to the known fact of higher overfitting risk
when using larger CNNs, which in this case is slightly higher for ResNet101
compared to ResNet50 or Inception v2 as a backbone with the Adam optimizer.

Tests considering the momentum algorithm, while less relevant to the article’s
focus were performed for a single hyperparameter for the momentum variable.
The momentum algorithm performs poorly with all backbones – a possible ex-
planation for this phenomenon is that momentum is not an adaptive algorithm
and may require a long time and resources to explore the state space for the best
solution with methods such as grid search, including checking multiple hyperpa-
rameters.

Detector training of objects in the Messier catalog is not a typical problem
of object detection. The colour variation of objects is marginal, and additionally,
there is a large group of objects that are difficult to distinguish from each other,
e.g., globular clusters. These challenges may impact object classification.

Most publications combining astronomy and deep learning focus on applying
artificial intelligence to large datasets from professional observatories. However,
the use of augmentation has made it possible to significantly increase the size
of the training set and to further expand the feature distribution by solving the
problem of different object location, size, sky brightness and contrast.

The images employed for training, validating and testing sets for the target,
commercially useful version should maintain high sharpness and resolution. In
addition, for commercial applications, it would be essential to train the obtained
detector on images from real observations. Nevertheless, the solution presented
in this paper provides a useful proof of a concept for obtaining a detector for
astronomical objects serving the needs of astronomy and amateur astrophotog-
raphy by means of deep learning methods.
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