PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismic behavior of interior polyvinyl chloride-carbon fiber-reinforced polymer-confined concrete column-ring beam joints

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Eleven interior polyvinyl chloride (PVC)-carbon fiber-reinforced polymer (CFRP)-confined concrete (PCCC) column-ring beam joints are fabricated and experimentally investigated. The impacts of axial compression ratio, frame beam reinforcement ratio, CFRP strips spacing, ring beam width and ring beam reinforcement ratio, on seismic behaviors are analyzed. All specimens show obvious failure signs, and the frame beam reinforcement ratio exerts a degree of effect on failure positions, exhibiting different failure modes, such as shear failure in the joint zone, shear-bending failure at the junction and bending failure at the frame beam. The experimental results show that the hysteresis curves are relatively full, which have roughly experienced four stages as elastic, elastic-plastic, stable and decline stages, reflecting that the interior joints have considerable seismic behavior. The increment of ring beam reinforcement ratio or ring beam width enhances the load capacity, mitigates degradation of strength and stiffness. The peak load increases by 38.63% as the ring beam reinforcement ratio increases from 0.88 to 1.5%. When the ring beam width increases from 75 to 125 mm, the peak load increases by 37.24%. Appropriately increasing axial compression ratio can raise the load capacity, alleviate strength degradation, and enhance the initial stiffness. As the axial compression ratio increases from 0.2 to 0.4, the peak load increases by19.41%. The joints with larger frame beam reinforcement ratio show higher load capacity, while the frame beam reinforcement ratio exerts marginal impacts on strength and initial stiffness degradation. The existing classical shear models and specification design formulae are used to evaluate the shear capacity of the interior joints, and the reasons for the deviations of prediction results are expounded, which provides the theoretical basis and useful reference for the subsequent establishment of a new shear capacity formula of the joints.
Rocznik
Strony
art. no. e49, 2023
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering and Architecture, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
autor
  • Department of Civil Engineering and Architecture, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
autor
  • Department of Civil Engineering and Architecture, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
autor
  • Department of Civil Engineering and Architecture, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
autor
  • State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Department of Civil Engineering and Architecture, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
Bibliografia
  • 1. Kazama M, Noda T. Damage statistics (summary of the 2011 off the pacific coast of Tohoku earthquake damage). Soils Found. 2012;52:780-92.
  • 2. Le-Trung K, Lee K, Lee J, et al. Experimental study of RC beam-column joints strengthened using CFRP composites. Compos B. 2010;41:76-85.
  • 3. Kim SW, Chang HJ. Structural performance of reinforced concrete interior beam-column joints with high-strength bars. Archiv Civ Mech Eng. 2021;21(97):1-14.
  • 4. Luo X, Cheng J, Xiang P, et al. Seismic behavior of corroded reinforced concrete column joints under low-cyclic repeated loading. Archiv Civ Mech Eng. 2020;20(40):1-20.
  • 5. Sung-Chul C, Yeong-Soo S. Cyclic testing of exterior beam-column joint with varying joint aspect ratio. ACI Struct J. 2014;111:693-704.
  • 6. Zhao WT, Yang H, Chen JF, et al. A proposed model for nonlinear analysis of RC beam-column joints under seismic loading. Eng Struct. 2019;180:829-43.
  • 7. Behnam H, Kuang JS, Samali B. Parametric finite element analysis of RC wide beam-column connections. Comput Struct. 2018;205:28-44.
  • 8. ACI Committee 318-14. Building code requirements for structural concrete and commentary. Farmington Hills MI: ACI 318M-14. American Concrete Institute; 2014.
  • 9. AIJ. Standards for structural calculation of steel reinforced concrete structures. Tokyo: Architectural Institute of Japan; 1991.
  • 10. Standard Association of New Zealand. New Zealand standard code of practice for the design of concrete structures. Wellington: Standards New Zealand (SNZ); 2006.
  • 11. GB 50010-2010. Code for design of concrete structures. Beijing: National Standards of People’s Republic of China; 2015.
  • 12. Ilia E, Mostofinejad D, Moghaddas A. Cyclic behavior of strong beam-weak column joints strengthened with different configurations of CFRP sheets. Archiv Civ Mech Eng. 2020;20(31):20-31.
  • 13. Saghafi MH, Shariatmadar H. Enhancement of seismic performance of beam-column joint connections using high performance fiber reinforced cementitious composites. Constr Build Mater. 2018;180:665-80.
  • 14. Tomii M, Sakino K, Xiao Y, et al. Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube, In: Proceeding of the International Speciality Conference on Concrete Filled Steel Tubular Structures, Harbin: China, 1985, 119-125.
  • 15. Nie JG, Bai Y, Cai CS. New connection system for confined concrete columns and beams. I: Experimental study. J Struct Eng. 2008;134:1787-99.
  • 16. Chen QJ, Cai J, Yang P. Seismic behavior of concrete filled steel tubular column-beam joints with discontinuous column tubes. Chin Civil Eng J. 2009;42:33-42.
  • 17. Pan P, Lam A, Lin X, et al. Cyclic loading tests and finite element analyses on performance of ring beam connections. Eng Struct. 2013;56:682-90.
  • 18. Bai Y, Nie J, Cai CS. New connection system for confined concrete columns and beams. II: Theoretical modeling. J Struct Eng. 2008;134:1800-9.
  • 19. Gemi L, Aksoylu C, Yazman Ş, et al. Experimental investigation of shear capacity and damage analysis of thinned end prefabricated concrete purlins strengthened by CFRP composite. Compos Struct. 2019;229: 111399.
  • 20. Spinella N. Modeling of shear behavior of reinforced concrete beams strengthened with FRP. Compos Struct. 2019;215:351-64.
  • 21. Aksoylu C, Yazman Ş, Ozkılıc YO, et al. Experimental analysis of reinforced concrete shear deficient beams with circular web openings strengthened by CFRP composite. Compos Struct. 2020;249: 112561.
  • 22. Kar S, Biswal KC. Rehabilitation of RC flexural members in shear with externally bonded fiber-reinforced polymer composites: present status and future need. Archiv Civ Mech Eng. 2021;21(130):1-24.
  • 23. Ozkılıc YO, Yazman Ş, Aksoylu C, et al. Numerical investigation of the parameters influencing the behavior of dapped end prefabricated concrete purlins with and without CFRP strengthening. Constr Build Mater. 2021;275: 122173.
  • 24. Mohamed HM, Abdel-Baky HM, Masmoudi R. Nonlinear stability analysis of concrete-filled fiber-reinforced polymer-tube columns: experimental and theoretical investigation. ACI Struct J. 2010;107:699-708.
  • 25. Kurt CE. Concrete-filled structure plastic columns. J Struct Div. 1978;104:55-63.
  • 26. Abdulla NA. Concrete filled PVC tube: a review. Constr Build Mater. 2017;156:321-9.
  • 27. Saafi M. Development and behavior of a new hybrid column in infrastructure systems Huntsville. Texas: Doctoral dissertation of the University of Alabama; 2001.
  • 28. Yu F. Experimental study and theoretical analysis on mechanical behavior of PVC-FRP confined concrete column. Shaanxi: Xi’an University of Architecture and Technology; 2007.
  • 29. Yu F, Li D, Niu DT, et al. A model for ultimate bearing capacity of PVC-CFRP confined concrete column with reinforced concrete beam joint under axial compression. Constr Build Mater. 2019;214:668-76.
  • 30. Yu F, Song ZK, Mansouri I, et al. Experimental study and finite element analysis of PVC-CFRP confined concrete column-ring beam joint subjected to eccentric compression. Constr Build Mater. 2020;254: 119081.
  • 31. Yu F, Wang JM, Wang Y, et al. Flexural capacity of fiber-reinforced polymer-confined concrete column-ring beam exterior joints under low cyclic loading. J Compos Constr. 2022;26:04022041.
  • 32. JGJ/T101-2015. Specification for seismic test of buildings. Beijing: National Standards of People’s Republic of China; 2015.
  • 33. GB/T 50081-2002. Standard for test method of mechanical properties of ordinary concrete. Beijing: National Standards of People’s Republic of China; 2002.
  • 34. GB/T 3354-2014. Test method for tensile properties of orientation fiber reinforced polymer matrix composite materials. Beijing: National Standards of People’s Republic of China; 2014.
  • 35. GB/T 8804.1-2003. Thermoplastic pipes-determination of tensile properties-part 1: general test method. Beijing: National Standards of People’s Republic of China; 2003.
  • 36. GB/T228.1-2010. Metallic materials-tensile testing-part 1: method of test at room temperature. Beijing: National Standards of People’s Republic of China; 2010.
  • 37. Hwang SJ, Lee HJ. Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance. ACI Struct J. 2000;97(1):35-44.
  • 38. Hwang SJ, Lee HJ. Strength prediction for discontinuity regions by softened strut-and-tie model. J Struct Eng. 2002;128(12):1519-26.
  • 39. Paulay T, Scarpas A. The behaviour of exterior beam-column joints. Bull N Z Soc for Earth Eng. 1981;14(3):131-44.
  • 40. Paulay T. Equilibrium criteria for reinforced concrete beam-column joints. ACI Struct J. 1989;86(6):635-43.
  • 41. Choi HY, Kim BI, Lee JY. Estimation of shear strength of beam-column joints. J Korea Concr Inst. 2012;24(2):185-93.
  • 42. Attaalla SA. General analytical model for nominal shear stress of type 2 normal-and high-strength concrete beam-column joints. ACI Struct J. 2004;101(1):65-75.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-316baf8b-a193-44f9-974c-e60580cc3a63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.