PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a Microstrip Filtering Antenna for 4G and 5G Wireless Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The filtering antenna provides both radiation and filtering features and is an important component for the RF front-end of wireless devices. The main function of a filtering antenna is to reject out-of-band signals, thus reducing the interference from adjacent channels. The aim of the present work is to design a 2.6 GHz microstrip filtering antenna for 4G and 5G global mobile services. The filtering antenna is designed using a hairpin bandpass filter integrated with an elliptical microstrip aerial. Good impedance matching is obtained by using appropriate dimensions of the hairpin bandpass filter. The 10 dB return loss bandwidth of the filtering antenna is approx. 5.7%, with the maximum gain for the elliptical filtering antenna of approx. 2.2 dB. Good agreements between the measured and simulated results are obtained for the proposed filtering antenna and the bandwidth covers almost the entire 2.6 GHz band.
Rocznik
Tom
Strony
78--83
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • ECE Department, Raghu Engineering College, Visakhapatnam, India
autor
  • Sisir Radar Private Limited, New Town, Kolkata, India
  • School of Electronics Engineering, Kalinga Institute of Industrial Technology (KIIT University), Bhubaneswar, India
Bibliografia
  • [1] Draft 2.6 GHz Band Plan, NICTA, 19 March, 2021 [Online]. Available: https://www.nicta.gov.pg/cp-0-11/
  • [2] W.-S. Yoon et al., "Reconfigurable circularly polarized microstrip antenna on a slotted ground", ETRI Journal, vol. 32, pp. 468–471, 2010 (https://doi.org/10.4218/etrij.10.0209.0455).
  • [3] S. Ahmed, T.K. Geok, M.Y. Alias, and M.N. Kamaruddin, "A survey on recent developments in filtering antenna technology", International Journal on Communications Antenna and Propagation, vol. 8, no. 5, pp. 374–384, 2018 (https://doi.org/10.15866/irecap. v8i5.14537).
  • [4] X.-G. Wang, Y. Yun, and I.-H. Kang, "Compact multiharmonic suppression LTCC bandpass filter using parallel short-ended coupledline structure", ETRI Journal, vol. 31, no. 3, pp. 254–262, 2009 (https://doi.org/10.4218/etrij.09.0108.0379).
  • [5] V.K. Velidi, "Dual-transmission-line microstrip equiripple lowpass filter with sharp roll-off", ETRI Journal, vol 33, no. 6, pp. 985–988, 2011 (https://doi.org/10.4218/etrij.11.0210.0497).
  • [6] F. Urbani, F. Bilotti, and L. Vegni, "Synthesis of filtering structures for microstrip active antennas using Orlov’s formula", ETRI Journal, vol. 27, no. 2, pp. 166–171, 2005 (https://doi.org/10.4218/etrij.05.0104.0035).
  • [7] E. Chen, J.-C. Hsuej, and V. Chen, "Instantaneous in-band radio frequency interference suppression using non-linear folders", Electronic Letters, vol.55, no. 7, pp. 372–374, 2019 (https://doi.org/10.1049/el.2019.0096).
  • [8] X. Chen, F. Zhao, L. Yan, and W. Zhang, "A compact filtering antenna with flat gain response within the pass band", IEEE Antennas Wireless Propagation Letters, vol.12, pp. 857–860, 2013 (https://doi.org/10.1109/LAWP.2013.2271972).
  • [9] X.Y. Zhang, W. Duan, and Y.-M. Pan, "High-gain filtering patch antenna without extra circuit", IEEE Transaction on Antennas and Propagation, vol. 63, no. 2, pp. 5883–5888, 2015 (https://doi.org/10.1109/TAP.2015.2481484).
  • [10] M.-C. Tang, D. Li, X. Chen, Y. Wang, K.-Z. Hu, and R.W. Ziolkowski, "Compact, wideband, planar filtenna with reconfigurable tri-polarization diversity", IEEE Transaction on Antennas and Propagation, vol. 67, no. 8, pp. 5689–5694, 2019 (https://doi.org.10.1109/TAP.2019.2920298).
  • [11] M.-C. Tang, D. Li, X. Chen, Y. Wang, K.-Z. Hu, and R.W. Ziolkowski, "Compact, low-profile, linearly and circularly polarized filtennas enabled with custom-designed feed-probe structures", IEEE Transaction on Antennas and Propagation, vol. 68, no. 7, pp. 5247–5256, 2020 (https://doi.org/0.1109/TAP.2020.2982504).
  • [12] A. Kumar and A.A. Althuwayb, "SIW resonator-based duplex filtenna", IEEE Antennas and Wireless Propagation Letters, vol. 20, pp. 2544–2548, 2021 (https://doi.org/10.1109/LAWP.2021 .3118566).
  • [13] W. Wang et al., "A single-layer dual-circularly polarized SIW-cavitybacked patch filtenna with wide axial-ratio bandwidth", IEEE Antennas and Wireless Propagation Letters, vol. 20, pp. 908–912, 2021 (https:/doi.org/10.1109/LAWP.2021.3066616).
  • [14] K.-Z. Hu, M.-C. Tang, Y. Wang, D. Li, and M. Li, "Compact, vertically integrated duplex filtenna with common feeding and radiating SIW cavities", IEEE Transaction on Antennas and Propagation, vol. 69, no. 1, pp. 502–507, 2021 (https://doi.org/10.1109/TAP.2020 .2999381).
  • [15] Q.-Q. He et al., "A compact, uniplanar, wideband, differential-fed transparent filtenna", IEEE Antennas and Wireless Propagation Letters, vol. 21, pp. 735–739, 2022 (https://doi.org/10.1109/LAWP.2022.3144401).
  • [16] D. Li, M.-C. Tang, Y. Wang, K.-Z. Hu, and R.W. Ziolkowski, "Dual-band, differentially-fed filtenna with wide bandwidth, high selectivity, and low cross-polarization", IEEE Transaction on Antennas and Propagation, vol. 70, no. 6, pp. 4872–4877, 2022 (https://doi.org/10.1109/TAP.2021.3138505).
  • [17] E.G. Cristal and S. Frankel, "Hairpin-line and hybrid hairpin line/half-wave parallel-coupled-line filters", IEEE Transaction on Microwave Theory and Technology, vol. 22, no. 11, pp. 719–728, 1972 (https://doi.org/10.1109/TMTT.1972.1127860).
  • [18] C.-H. Hsu, H.-H. Tung, and C.-K. Hsu, "Miniaturization interdigital hairpin microstrip bandpass filter", Microwave and Optical Technology Letters, vol. 51, no. 5, pp. 1363–1366, 2009 (https://doi.org/10.1002/mop.24314).
  • [19] H. Shaman, S. Almorqi, O. Haraz, and S. Alshebeili, "Hairpin microstrip bandpass filter for millimeter-wave applications", in Proc. of 2014 Mediterranean Microwave Symposium (MMS2014), Marrakech, Morocco, 2014, IEEE Xplore, pp. 1–4, 2014 (https://doi.org/10.1109/MMS.2014.7088919).
  • [20] J.-S.G. Hong and M.J. Lancaster, Microstrip Filters for RF/Microwave Applications, 1st Ed. John Wiley & Sons Inc., 460 p., 2001 (https://doi.org/10.1002/0471221619).
  • [21] D.M. Pozar, Microwave Engineering, 4th Ed. John Wiley & Sons Inc., 736 p., 2012 (ISBN: 9780470631553).
  • [22] P. Mythili and A. Das, "A simple approach to determine the resonant frequencies of an elliptical microstrip antenna", Indian Journal Radio Space Physics, vol. 26, pp. 204–207, 1997 (https://doi.org/10.1049/ip-map:19981636).
  • [23] P.K. Jain et al., "Elliptical shaped wide slot monopole patch antenna with crossed shaped parasitic element for WLAN, Wi-MAX, and UWB application", Microwave and Optical Technology Letters, vol. 62, pp. 899–905, 2020 (https://doi.org/10.1002/mop.32100).
  • [24] C.-T. Chuang and S.-J. Chung, "A compact printed filtering antenna using a ground-intruded coupled line resonator", IEEE Transaction on Antennas and Propagation, vol. 59, pp. 3630–3637, 2011 (https://doi.org/10.1109/TAP.2011.2163777).
  • [25] Z.A.A. Nasser, Z. Zakaria, N.A. Shairi, S.N. Zabri, and A.M. Zobilah, "Design of compact filtenna based on capacitor loaded square ring resonator for wireless applications", Progress in Electromagnetics Research M, vol. 96, pp. 21–31, 2020 (https://doi.org/10.2528/PIERM20063008).
  • [26] J. Cui, A. Zhang, and S. Yan, "Co-design of a filtering antenna based on multilayer structure", International Journal RF and Microwave Computer Aided Engineering, vol. 30, e22096, 2020 (https://doi.org/10.1002/mmce.22096).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3164227f-2398-4abd-a2c8-16de4262c9d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.