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Abstract
This paper suggests a technique for the construction of fabric three-dimensional models 
based on the piecewise continuous representation of the thread surface. The approach allows 
to exclude such simulation defects as “interpenetration” of threads in the fabric, and takes 
into account the geometric features of the thread structure, the possibility of their bending in 
several planes, and changes in the form and sectional area. The geometric models obtained 
can be used to analyse the forces and deformations occurring in the fabric with the help of 
the finite-element simulation programs in various specialised software complexes, such as 
ANSYS, LS-DYNA, ABAQUS, NASTRAN etc. The structure parameters which are difficult to 
calculate using standard techniques, e.g. the pore volume and contact area between threads 
can be calculated with the help of describing the fabric three-dimensional structure.
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The traditional approach to thread sim-
ulation in a fabric structure is to calcu-
late the middle line, and then the section 
curve sweeps along the yarn path to form 
sets of section planes [5]. The axial line 
or its part can be depicted as a sinusoid 
[6-8], as well as other trigonometric func-
tions [9]. Also, the thread form can be 
specified in the form of splines [10-14]. 
The disadvantage of such approaches is 
the effect of thread “interpenetration” in 
the fabric due to approximations in the 
geometric models. For this, the authors 
suggest using a special mechanism for the 
elimination of such a phenomenon, which 
complicates the algorithm for the con-
struction of a three-dimensional model.

This paper proposes the use of direct 
simulation of the thread surface in a 
fabric based on the piecewise linear 
representation of functions, which was 
described in paper [15]. Such an ap-
proach allows not only to exclude thread 
“interpenetration”, but also to take into 
account the thread bending in several 
planes when simulating, as well as the 
change in the cross-sectional form of 

	 Introduction
Three-dimensional fabric simulation al-
lows to understand the fabric structure, 
which is especially important when de-
signing complex structure fabrics (mul-
tilayered fabrics, fabrics with variable 
density of threads etc.). The structure 
parameters which are difficult to calcu-
late using standard techniques (pore vol-
ume, contact area between threads etc.) 
can be calculated with the help of math-
ematical models describing the fabric 
three-dimensional structure. The fabric 
3D models can be used to calculate forc-
es and deformations arising in the fabric 
with the help of finite-element simu-
lation programs in various specialised 
software complexes, for example, AN-
SYS, LS-DYNA, ABAQUS, NASTRAN 
[1-3], and others. The advantage of 3D 
models of threads and textile material is 
the ability to take into account the threads 
bending in different directions, which al-
lows more accurate prediction of many 
parameters, for example, fabrics with 
large thread overlaps have lateral thread 
bending, which affects many structural 
indicators of the product form [4].

threads caused by their deformation at 
intersections, which is associated with 
their unevenness.

With an accurate 3D model of the thread, 
it is possible to model complex phe-
nomena, such as the recovery behaviour 
of fabrics [16] and the influence of weft 
density on fabric dynamic thickness un-
der tensile forces [17].

	 Thread base form simulation
This paper presents a technique for the 
construction of a thread 3D model for 
a fabric element based on previously ob-
tained data on the calculation of a thread 
profile in the form of the piecewise con-
tinuous function. The primary parame-
ters of the structure can be obtained us-
ing the methods described, for example, 
in the work [18-19]. Then it is necessary 
to simulate the 3D structure of the thread 
in the fabric.

The function determining the position of 
the centre thread line f(x) is calculated 
based on the possible limits of the thread 

[9]. Also, the thread form can be specified in the form of splines [10-14]. The disadvantage of 

such approaches is the effect of  thread “interpenetration” in the fabric due to approximations in 

the geometric models. For this, the authors suggest  using a special mechanism for the 
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This paper proposes the use of  direct simulation of the thread surface in a fabric based on 

the piecewise linear representation of functions, which was described in paper [15]. Such an 

approach allows not only to exclude thread “interpenetration”, but also to take into account the 

thread bending in several planes when simulating, as well as the change in the cross-sectional 

form of  threads caused by their deformation  at  intersections, which is associated with their 
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With an accurate 3D model of the thread, it is possible to model complex phenomena, such 

as the recovery behaviour of   fabrics [16] and the influence of weft density on fabric dynamic 

thickness under tensile forces [17].

Thread base form simulation 

This paper presents a technique for the construction of a thread 3D model for a fabric 

element based on  previously obtained data on the calculation of a thread profile in the form of 

the piecewise continuous function. The primary parameters of the structure can be obtained 

using the methods described, for example, in the work [18-19]. Then it is necessary to simulate 

the 3D structure of the thread in the fabric. 

The function determining the position of the centre thread line f(x) is calculated based on 

the possible limits of the thread profile. Then, if the thread  cross-section is an ellipse, the 

following equation can be written down: 
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Where dyv – weft vertical diameter; 

Equation (1). 

(1)
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Horizontal resizing of the thread requires 
other calculation techniques, since the 
area for the initial value setting is not 
rectangular. The methods of parametric 
surface specification are better to be used 
for this.

Figure 1. Thread three-dimensional model 
for a fabric element.

profile. Then, if the thread cross-section is 
an ellipse, Equation (1) can be written.

Where, dyv – weft vertical diameter; dyg 
– weft horizontal diameter; dov –warp 
vertical diameter; Н – transverse centre 
of the first weft thread; Е – transverse 
centre of the second weft thread; ly – dis-
tance between weft threads; x1, x2, x3, x4 
– coordinates for the tangency points of 
the straight lines and curves describing 
the upper and lower limits of the thread 
profiles (the x-axis); b, b1 – terms in the 
equation of the straight line connecting 
the curves that describe the limits of the 
thread profile in the fabric; d – slope of 
the straight line connecting the curves 
that describe the limits of the thread pro-
file in the fabric.

Then, assuming that the thread takes 
the form of a curved elliptical cylinder 
(a closed cylindrical surface with any 
base can be used), we obtain the function 
Gv(x, y), expressing the upper volumetric 
(in “xyz” coordinates) part of the thread 
form, see Equation (2).

Equation (2), where, jv(x) –function de-
scribing the top of the thread profile; f(x) 
– function describing the middle line of 
the thread (with a bending in one plane); 
r – half of the warp horizontal diameter.

The lower part of the thread surface 
Gn(x, y) is presented by Equation (3).

Equation (3), where, jn(x) – function de-
scribing the lower part of the thread pro-
file in space.

The parameters of the middle thread line 
are not necessary to be calculated, and 
then the upper and lower volume parts 
of the thread profile can be expressed as 
Equations (4) and (5). 

There is an example of function parame-
ter calculation for the construction of the 
main thread three-dimensional model for 
linen fabric, a prototype of a plain struc-
ture at one bending interval. The fabric is 
characterised by the following parame-
ters: weft density – 150 threads/10 cm, 
warp density – 170 threads/10 cm, fabric 
warp and weft diameters with regard to 
deformation – 0.274 mm vertically and 
0.372 mm horizontally, height of the 
bending warp wave – 0.448 mm.

Piecewise continuous function describ-
ing the upper limits of the thread profile 
in the fabric [16], see Equation (6).

Piecewise continuous function describ-
ing the lower limits of the thread profile 
in the fabric, see Equation (7).

The three-dimensional model of this area 
can be expressed by the functions given 
as Equations (8) and (9).

Figure 1 shows two surfaces construct-
ed by Equations (8) and (9) taking into 
account the results of Equations (6) and 
(7), describing the thread structure in the 
fabric at the bending interval.

A set of surfaces to describe the struc-
ture of a fabric in a three-dimensional 
form can be built with the help of this 
technique. An example of such a con-
struction is shown in Figure 2. The pri-
mary parameters of the structure were 
calculated with the models described in 
work [18]. It can also be presented as 
a function of the number of fibres in the 
yarn cross-section and the packing den-
sity of fibres. 
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The three-dimensional model of this area can be expressed by the following functions: 
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Equations (2), (3), (4), (5), (6), (7), (8) and (9). 
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	 Simulation of the thread form 
with variable parameters

The effect of thread horizontal diam-
eters increasing at the point of contact 
with the opposite thread system can be 
described by simulating the thread form 
in the fabric.

We introduce a parameter that determines 
the change in size of the thread cross-sec-
tion in the horizontal direction rn along 
the length of the simulation sample:

Simulation of the thread form with variable parameters 

The effect of  thread horizontal diameters increasing at the point of contact with the 

opposite thread system can be described by simulating the thread form in the fabric. 

We introduce a parameter that determines the change in  size of the thread cross- section 

in the horizontal direction rn along the length of the simulation sample: 

              (10) 

Where,       – functional dependence relating the coordinate along the length of the bending 

thread and the cross-sectional size of the thread in the horizontal direction.

It may happen that the cross-section’s form changes along the length of the bending 

thread, i.e. at the contact point of the threads, it resembles the form of an ellipse more, and it 

tends to take a form close to a “stadium” or “oval” in the gap between threads. The equation of 

the reference section can be presented by an equation based on the ellipse equation and adding 

the degree LL to the argument: 
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Where, w – vertical ellipse semiaxis; 

v– ellipse centre coordinate; 

r – horizontal ellipse semiaxis. 

Where, the LL = 1 section has the form of an ellipse; when LL increases, the section form 

becomes more like a “stadium” and later like a rectangle (Figure 3). 
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Where, w – vertical ellipse semiaxis;  
v – ellipse centre coordinate; r – horizon-
tal ellipse semiaxis.
Where, the LL = 1 section has the form of 
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Figure 3. Thread cross-section form: a) LL = 1, b) LL = 2, c) LL = 3, d) LL = 6.

The various cross-sectional forms of 
the thread can be obtained using Equa-
tion (11). To do this, we set the argument 
LLn as varying along the length of the 
simulated thread sample in the fabric:

Figure 3 – Thread cross-section form (a – LL=1; b – LL=2; c – LL=3; d – LL=6). 

The various cross-sectional forms of the thread can be obtained using  equation (11). To 

do this, we set the argument LLn as varying along the length of the simulated thread sample in 

the fabric: 
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Where,       – functional dependence relating the coordinate along the length of the bending 

thread and the section form.

The smooth junctions from one form to another can be set with the help of the various 

algorithms. 

 To reflect the lateral bending of the thread in the fabric, we introduce the additional 

dependence       .
The following variables must be specified for the function parametric definition that 

describes the three-dimensional model of yarn in a fabric: Xn, Yn,m, Zn,m. (n and m – the current 

number of the segment by which we divide the simulated yarn segment horizontally and 

vertically).   
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A set of surfaces to describe the structure of a fabric in a three-dimensional form can be 

built with the help of this technique. An example of such a construction is shown in Figure 2.

The primary parameters of the structure were calculated with the models described in work [18]. 

It  can also be presented as a function of the number of fibres in the yarn cross-section and the 

packing density of fibres.
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Figure 2 – Fabric 3D model (a – cotton fabric of plain structure with variable density, b –

carbon fabric with twill structure). 

Horizontal resizing of the thread requires other calculation techniques, since the area for 

the initial value setting is not rectangular. The methods of parametric surface specification are 

better to be used for this.
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Simulation of the thread form with variable parameters 

The effect of  thread horizontal diameters increasing at the point of contact with the 

opposite thread system can be described by simulating the thread form in the fabric. 

We introduce a parameter that determines the change in  size of the thread cross- section 

in the horizontal direction rn along the length of the simulation sample: 
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Where,       – functional dependence relating the coordinate along the length of the bending 

thread and the cross-sectional size of the thread in the horizontal direction.

It may happen that the cross-section’s form changes along the length of the bending 

thread, i.e. at the contact point of the threads, it resembles the form of an ellipse more, and it 

tends to take a form close to a “stadium” or “oval” in the gap between threads. The equation of 

the reference section can be presented by an equation based on the ellipse equation and adding 

the degree LL to the argument: 
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v– ellipse centre coordinate; 

r – horizontal ellipse semiaxis. 

Where, the LL = 1 section has the form of an ellipse; when LL increases, the section form 

becomes more like a “stadium” and later like a rectangle (Figure 3). 
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lower part of the thread (ZNn,m) in the 
fabric, taking into account lateral bend-
ing as well as changes in cross-sectional 
sizes and the form of the thread in the 
length, is given as Equation (15).
 
For the upper part (ZVn,m) the equation is 
written as Equation (16).

In the case of cross-sectional forms oth-
er than the ellipse, Equations (1), (6) 
and (7) are different.

Equations (15) and (16) can be present-
ed in an explicit form. For example, the 
general surface equations of the yarn 
lower part in an explicit form are given 
as Equation (17).

Assuming that the piecewise continuous 
function consists of two curves (y1(X), 
y2(X)) and a straight line that connects 
them (y = kX + b), then the slope of the 

tangent (k) to the curves is determined as 
the derivative of function y1 or y2 at the 
tangency points, i.e.:

Assuming that the piecewise continuous function consists of two curves (     ,     )

and a straight line that connects them (y = kX + b), then the slope of the tangent (k) to the curves 

is determined as the derivative of  function y1 or y2 at the tangency points, i.e.: 
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Where, x1 – x-coordinate of the first tangency point; 

x2 – x-coordinate of the second tangency point.

To find  parameters x1, x2, k & b that define the piecewise continuous function, there is a 

system of equations:
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The numerical solution of this system can be implemented by various software tools. 

After system solution (19), the pivot points and  equation of the straight line are determined. 

Based on  formulas (13) - (16), taking into account the values contained therein, an

algorithm for the construction of a fabric three-dimensional model was developed and 

implemented in a software form. The simulation results are presented in Figures 4 – 5. 

The thread  three-dimensional model for the fabric taking into account lateral bending 

and changes in the form of the thread in the length is presented in Figure 4. 

Figure 4 – Thread three-dimensional model for the fabric with the form change. 
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algorithms. 
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Assuming that the piecewise continuous function consists of two curves (     ,     )

and a straight line that connects them (y = kX + b), then the slope of the tangent (k) to the curves 

is determined as the derivative of  function y1 or y2 at the tangency points, i.e.: 
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The numerical solution of this system can be implemented by various software tools. 

After system solution (19), the pivot points and  equation of the straight line are determined. 

Based on  formulas (13) - (16), taking into account the values contained therein, an

algorithm for the construction of a fabric three-dimensional model was developed and 

implemented in a software form. The simulation results are presented in Figures 4 – 5. 

The thread  three-dimensional model for the fabric taking into account lateral bending 

and changes in the form of the thread in the length is presented in Figure 4. 

Figure 4 – Thread three-dimensional model for the fabric with the form change. 

The thread  three-dimensional model for the fabric with the change in the size of the 

thread cross-section is presented in Figure 5. 

Figure 5 –Thread three-dimensional model for the fabric with the change in the size of the cross-

section 

Conclusion 

The results obtained allow to state that the technique developed for fabric simulation 

creates models taking into account most of the characteristics of thread behaviour in fabric. The 

further development of this direction is the simulation of changes in the form and size of  threads 

associated with their unevenness. In this case, the use of  data on  defect distribution in the yarn 

of different raw materials and varieties is possible. 

Several types of equations are developed - in parametric and explicit form. Each form may 

have its own advantages in some cases.  In our opinion, the piecewise function  together with the 

equation in the explicit form allows to eliminate interpenetration between yarns in fabric as well 

as to simplify the model and conduct direct calculations of the coordinates of surface points. 
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Figure 4. Thread three-dimensional model for the fabric with the 
form change.

Figure 5. Thread three-dimensional model for the fabric with the 
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Based on Equations (13)-(16), taking 
into account the values contained there-
in, an algorithm for the construction of a 
fabric three-dimensional model was de-
veloped and implemented in a software 
form. The simulation results are present-
ed in Figures 4 and 5.

The thread three-dimensional model 
for the fabric taking into account lateral 
bending and changes in the form of the 
thread in the length is presented in Fig-
ure 4.

The thread three-dimensional model for 
the fabric with the change in the size of 
the thread cross-section is presented in 
Figure 5.

	 Conclusions
The results obtained allow to state that 
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lation creates models taking into account 
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ment of this direction is the simulation of 
changes in the form and size of threads 
associated with their unevenness. In this 
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function together with the equation in 
the explicit form allows to eliminate in-
terpenetration between yarns in fabric as 
well as to simplify the model and conduct 
direct calculations of the coordinates of 
surface points.
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