PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of fibre loading and surface treatment on the impact strength of coir polyester composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this work, coir fibre with varying fibre content was selected as reinforcements to prepare polymer-based matrices and the problem of reduced fibre-matrix interfacial bond strength has been diluted by chemical treatment of coir fibres with alkali solution. Design/methodology/approach: The effect of fibre loading, solution concentration and soaking time on the impact strength of the composites were analyzed using statistical techniques. Response Surface Methodology (RSM) approach was used to model and optimize the impact properties of coir-polyester composites. Findings: The impact strength of coir fibre reinforced polyester composite depends mainly on the fabrication parameters such as fibre-polyester content, soaking time, concentration of soaking agent and adhesive interaction between the fibre and reinforcement. Research limitations/implications: The mechanical properties of any coir polyester composite depend on the nature bonding between the fibre and reinforcement. The presence of cellulose, lignin on the periphery of any natural fibre reduces the bonding strength of the composite. This limitation is overcome by fibre treatment over sodium hydroxide to have better impact properties. Practical implications: Now days, natural fibre reinforced composites are capable of replacing automotive parts, subjected to static loads such as engine Guard, light doom, name plate, tool box and front panels etc. These materials can withstand any static load due to its higher strength to weight ratios. Originality/value: The effect of fibre loading, solution concentration and soaking time on the impact strength of the composites were analyzed using statistical techniques. Response Surface Methodology (RSM) approach was used to model and optimize the impact properties of coir-polyester composites. The impact strength of NaOH impregnated coir fibre reinforced polyester composites was evaluated.
Rocznik
Strony
16--20
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Department of Mechanical Engineering, MEPCO Schlenk Engineering College, Sivakasi – 626005, India
Bibliografia
  • [1] R. Gallego, C.C. Piras, L.A.J. Rutgeerts, S. Fernandez- Prieto, W.M. De Borggraeve, J.M. Franco, J. Smets, Green approach for the activation and functionalization of jute fibers through ball milling, Cellulose 27/2 (2020) 643-656. DOI: https://doi.org/10.1007/s10570-019-02831-0
  • [2] J.-Z. Liang, Predictions of tensile strength of short inorganic fibre reinforced polymer composites, Polymer Testing 30/7 (2011) 749-752. DOI: https://doi.org/10.1016/j.polymertesting.2011.06.001
  • [3] D. Senthilnathan, A. Gnanavel Babu, G.B. Bhaskar, K.G.S. Gopinath, Characterization of glass fibre– coconut coir–human hair hybrid composites, International Journal of Engineering and Technology 6/1 (2014) 75-82.
  • [4] C. Jayasekara, N. Amarasinghe, Coir–Coconut Cultivation, Extraction and Processing of Coir, in: J. Müssig (ed.), Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications, John Wiley & Sons, Ltd, 2010, 197-217. DOI: https://doi.org/10.1002/9780470660324.ch9
  • [5] S. Sathees Kumar, Dataset on mechanical properties of natural fiber reinforced polyester composites for engineering applications, Data in Brief 28 (2020) 105054. DOI: https://doi.org/10.1016/j.dib.2019.105054
  • [6] V.G. Geethamma, G. Kalaprasad, G. Groeninckx, S. Thomas, Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites, Composites Part A: Applied Science and Manufacturing 36/11 (2005) 1499-1506. DOI: https://doi.org/10.1016/j.compositesa.2005.03.004
  • [7] G.L. Easwara Prasad, B.S. Keerthi Gowda, R. Velmurugan, A study on impact strength characteristics of coir polyester composites, Procedia Engineering 173 (2017) 771-777. DOI: https://doi.org/10.1016/j.proeng.2016.12.091
  • [8] K.G. Satyanarayana, C.K.S. Pillai, K. Sukumaran, S.G.K. Pillai, P.K. Rohatgi, K. Vijayan, Structure property studies of fibres from various parts of the coconut tree, Journal of Materials Science 17/8 (1982) 2453-2462. DOI: https://doi.org/10.1007/BF00543759
  • [9] D. Nagesh Kumar, M. Janga Reddy, Multipurpose reservoir operation using particle swarm optimization, Journal of Water Resources Planning and Management 133/3 (2007) 192-201. DOI: https://doi.org/10.1061/(ASCE)0733- 9496(2007)133:3(192)
  • [10] G. Wróbel, S. Pawlak, Ultrasonic evaluation of the fibre content in glass/epoxy composites, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 187-190.
  • [11] J. Stabik, A. Dybowska, M. Chomiak, Polymer composites filled with powders as polymer graded materials, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 153-161.
  • [12] G. Wróbel, S. Pawlak, The effect of fiber content on the ultrasonic wave velocity in glass/polyester composites, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 295-298. [13] V. Calado, D.W. Barreto, J.R.M. d'Almeida, The effect of a chemical treatment on the structure and morphology of coir fibers, Journal of Materials Science Letters 19/23 (2000) 2151-2153. DOI: https://doi.org/10.1023/A:1026743314291
  • [14] N. Venkateshwaran, A. Elayaperumal, G.K. Sathiya, Prediction of tensile properties of hybrid-natural fiber composites, Composites Part B: Engineering 43/2 (2012) 793-796. DOI: https://doi.org/10.1016/j.compositesb.2011.08.023
  • [15] G. Dorez, L. Ferry, R. Sonnier, A. Taguet, J.M. Lopez- Cuesta, Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers, Journal of Analytical and Applied Pyrolysis 107 (2014) 323-331. DOI: https://doi.org/10.1016/j.jaap.2014.03.017
  • [16] F. Serra-Parareda, Q. Tarrés, F.X. Espinach, F. Vilaseca, P. Mutjé, M. Delgado-Aguilar, Influence of lignin content on the intrinsic modulus of natural fibers and on the stiffness of composite materials, International Journal of Biological Macromolecules 155 (2020) 81-90. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.160 [17] A. Komuraiah, N.S. Kumar, B.D. Prasad, Chemical composition of natural fibers and its influence on their mechanical properties, Mechanics of Composite Materials 50/3 (2014) 359-376. DOI: https://doi.org/10.1007/s11029-014-9422-2
  • [18] S. Kalyana Sundaram, S. Jayabal, Mechanical properties of potassium hydroxide-pretreated Christmas palm fiber-reinforced polyester composites: characterization study, modeling and optimization, Journal of Polymer Engineering 34/9 (2014) 839-849. DOI: https://doi.org/10.1515/polyeng-2014-0084
  • [19] S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites ‒ a review, Polymer Engineering and Science 49/7 (2009) 1253-1272. DOI: https://doi.org/10.1002/pen.21328
  • [20] A. Benyahia, A. Merrouche, M. Rokbi, Z. Kouadri, Study the effect of alkali treatment of natural fibers on the mechanical behavior of the composite unsaturated Polyester-fiber Alfa, Proceedings of the 21st Congres Mechanics French, Bordeaux, 2013, 1-6.
  • [21] T.H. Nam, S. Ogihara, N.H. Tung, S. Kobayashi, Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites, Composites Part B: Engineering 42/6 (2011) 1648-1656. DOI: https://doi.org/10.1016/j.compositesb.2011.04.001
  • [22] J. Myalski, J. Śleziona, Influence of preparing of GFR recyclates on the properties of polyester matrix compsites, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 163-166.
  • [23] D. Priselac, T. Tomašegović, S. Mahović Poljaček, T. Cigula, M. Leskovac, Thermal, surface and mechanical properties of PCL/PLA composites with coconut fibres as an alternative material to photopolymer printing plates, Tehnički Glasnik 11/3 (2017) 111-116.
  • [24] S. Wu, Impact fracture mechanisms in polymer blends: Rubber‐toughened nylon, Journal of Polymer Science: Polymer Physics Edition 21/5 (1983) 699-716. DOI: https://doi.org/10.1002/pol.1983.180210503
  • [25] N. Mohd Nurazzi, A. Khalina, M. Chandrasekar, H.A. Aisyah, S. Ayu Rafiqah, R.A. Ilyas, Z.M. Hanafee, Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites, Polimers 65/2 (2020) 115-124. DOI: https://doi.org/10.14314/polimery.2020.2.5
  • [26] S. Jayabal, U. Natarajan, U. Sekar, Regression modeling and optimization of machinability behavior of glass-coir-polyester hybrid composite using factorial design methodology, The International Journal of Advanced Manufacturing Technology 55/1 (2011) 263-273. DOI: https://doi.org/10.1007/s00170-010-3030-7 [27] M.N. Obaid, S.H. Radhi, Enhancement of tribological properties and characteristic of polymer matrix composite (UHMWPE reinforced with short fibres of polyester) for Total Disc Replacement (TDR), Journal of Achievements in Materials and Manufacturing Engineering 102/2 (2020) 55-65. DOI: https://doi.org/10.5604/01.3001.0014.6775
  • [28] L.A. Dobrzański, B. Ziębowicz, M. Drak, Mechanical properties and the structure of magnetic composite materials, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 79-82.
  • [29] L.A. Dobrzański, A. Tomiczek, B. Tomiczek, A. Ślawska-Waniewska, O. Iesenchuk, Polymer matrix compo-site materials reinforced by Tb0.3Dy0.7Fe1.9 magneto-strictive particles, Journal of Achievements in Mate-rials and Manufacturing Engineering 37/1 (2009) 16-23.
  • [30] K.R. Sumesh, K. Kanthavel, Optimizing various para-meters influencing mechanical properties of banana/ coir natural fiber composites using grey relational analysis and artificial neural network models, Journal of Industrial Textiles (2020) (onlineFirst). DOI: https://doi.org/10.1177/1528083720930304
  • [31] G.E. Box, N.R. Draper, Empirical model-building and response surfaces, Vol. 424, Wiley, New York, 1987.
  • [32] R.H. Myers, D.C. Montgomery, C. M. Anderson-Cook, Response surface methodology: process and product optimization using designed experiments, John Wiley & Sons, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-315f0ffb-3931-4ac6-874c-63b4b8a951fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.