PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Process analysis of the hot plate welding of drive belts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most industrial machines use belt transmission for power transfer. These mechanisms often use the round belts of several milli-metres in diameter that are made of thermoplastic elastomers, especially polyurethane. Their production process calls for bonding the ma-terial, which is often performed by hot plate butt welding. In order to achieve proper design of an automatic welding machine, the authors analysed the hot plate welding process of round belts. This process consists of five phases. It is necessary to recognize all the physical phenomena that occur during welding, especially those connected with thermomechanical properties of material. This knowledge is neces-sary to determine the temperature distribution during each step of the process. The paper presents a standard welding cycle together with an explanation of the physical phenomena in each phase. An analysis of these fundamentals will be used to derivate the function of tem-perature distribution during all process phases. In addition, some assumptions for calculation of temperature distribution and some funda-mental physic correlations were presented.
Rocznik
Strony
84--90
Opis fizyczny
Bibliogr. 46 poz., rys., wykr.
Twórcy
  • Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
  • Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 61-138 Poznań, Poland
Bibliografia
  • 1. Amanat N., James N. L., McKenzie D.R. (2010), Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices, Medical engineering & Physics, 32, 690–699.
  • 2. Amancio-Filho S.T., dos Santos J.F. (2009), Joining of Polymers and Polymer-Metal Hybrid Structures: Recent Developments and Trends, Polymer Engineering and Science, 49(8), 1461–1476.
  • 3. Behabelt (2015), Product Catalogue 2015/2016, Behabelt, Glottertal.
  • 4. Carslaw H.S., Jeager J.C., 1959, Conduction of Heat in Solids, Oxford University Press, London.
  • 5. Casalino G., Ghorbel E. (2008), Numerical model of CO2 laser welding of thermoplastic polymers, Journal of Materials Processing Technology, 207, 63–71.
  • 6. Ciszewski A., Radomski T. (1989), Constructuion materials in machine design (in Polish), PWN, Warszawa.
  • 7. Cocard M., Grozav I., Iacob M., Caneparu A. (2009), Establishing the Optimum Welding Procedure for PE 100 Polyethylene Pipelines Using the Response Surface Design, Materiale Plastice, 46(4), 452–457.
  • 8. Domek G., Dudziak M. (2011), Energy Dissipation in Timing Belts Made From Composite Materials, Advanced Material Research, 189-193, 4414–4418.
  • 9. Domek G., Kołodziej A., Dudziak M., Woźniak T. (2016), Identification of the quality of timing belt pulleys, Procedia Engineering, 177, 275–280.
  • 10. Dyja R., Gawrońska E., Grosser A. (2017), Numerical problems related to solving the Navier-Stokes equations in connection with the heat transfer with the use of FEM, Procedia Engineering, 177, 78–85.
  • 11. Evers F., Schöppner V., Lakemeyer P. (2017), The influence on welding processes on the weld strength of flame-retardant materials, Weld World, 61, 161–170.
  • 12. Gawrońska E. (2019), A sequential approach to numerical simulations of solidification with domain and time decomposition, Applied Sciences, 9(10).
  • 13. Grewell D., Benatar A. (2007), Welding of plastics: fundamentals and new developments, International Polymer Processing, 22(1), 43–60.
  • 14. Groover M. P. (2015), Fundamentals of modern manufacturing, Willey, 503–510.
  • 15. Inoue T., Miyata R., Hirai S. (2016), Antagonistically Twisted Round Belt Actuator System for Robotic Joints, Journal of Robotics and Mechatronics, 28(6), 842–853.
  • 16. Jasiulek P. (2006), Joining of plastics by welding, glueing and laminating (in Pollish), Wydawnictwo ‘KaBe’, Krosno.
  • 17. Klimpel A. (2000), Welding of termoplastics materials (in Polish), Wydawnictwo Politechniki Śląskiej, Gliwice.
  • 18. Krawiec P., Grzelka M., Kroczak J., Domek G., Kołodziej A. (2019), A proposal of measurement methodology and assessment of manufacturing methods of nontypical cog belt pulleys, Measurement, 132, 182–190.
  • 19. Krawiec P., Waluś K., Warguła Ł., Adamiec J. (2018), Wear evaluation of elements of V-belt transmission with the application of the optical microscope, MATEC Web of Conferences, 157, 01009.
  • 20. Krishnan C., Benatar A. (2004), Analysis of Residual Stress in Hot Plate Welded Polycarbonate, ANTEC 2004 Proceedings: Plastics, 1149–1153.
  • 21. Kubiak M. (2019), Prediction of microstructure composition in steel plate heated using high power Yb:YAG laser radiation, MATEC Web of Conferences, 254, 02023.
  • 22. Kukla M., Tarkowski P., Górecki J., Malujda I., Talaśka K. (2015), The Effect of Magnetic Field on Magnetorheological Composites. Artificial Neural Network Based Modelling and Experiments, Applied Mechanics And Materials, 816, 327–336.
  • 23. Madej M., Ozimina D. (2010), Plastics and composite materials (in Polish), Wydawnictwo Politechniki Świętokrzyskiej, Kielce.
  • 24. Mokhtarzadeh A., Benatar A. (2012), Experiments with conventional and high temperature hot plate welding of thermoplastics using temperature and pressure control, ANTEC 2012 Proceedings: Plastics, 1684–1690.
  • 25. Nieh J., Lee J. (1992), Hot Plate Welding of Polypropylene Part I: Crystallization Kinetics, Polymer Engineering and Science, 38, 1121–1132.
  • 26. Potente H., Schneiders J., Bornemann M. (2002), Theoretical model for the one-dimensional temperature and stress calculation of simple hot plate welded geometries, Macromolecular Materials and Engineering, 287, 843–853.
  • 27. Puszka A. (2006), Polyurethanes – sources, properties and modifications (in Polish), Zakład Chemii Polimerów, Wydział Chemii Uniwersytetu Marii Curie Skłodowskiej w Lublinie, Lublin.
  • 28. Rzasinski R. (2017), The algorithm of verification of welding process for plastic pipes, IOP Conference Series: Materials Science and Engineering, 227, 012113.
  • 29. Saternus Z., Piekarska W., Kubiak M., Domański T., Goszczyńska-Króliszewska D. (2018), Numerical estimation of temperature field in a laser welded butt joint made of dissimilar materials, MATEC Web of Conferences, 157, 02043.
  • 30. Saternus Z., Piekarska W., Kubiak M., Domański T., Goszczyńska-Króliszewska D. (2019), Numerical modeling of cutting process of steel sheets using a laser beam, MATEC Web of Conferences, 254, 08004.
  • 31. Sikora R. (1993), Polymers processing (in Polish), Wydawnictwo ŻAK, Warszawa.
  • 32. Staniszewski B., 1979, Wymiana Ciepła Podstawy Teoretyczne, PWN, Warszawa.
  • 33. Taler J., Duda P., 2003, Rozwiązywanie prostych i odwrotnych zagadnień przewodzenia ciepła, Wydawnictwo Naukowo – Tech-niczne, Warszawa.
  • 34. Troughton M. (1997), Handbook of Plastics Joining: A practical guide, Plastics Design Library, New York.
  • 35. Wałęsa K., Malujda I., Górecki J. (2020), Experimental research of the mechanical properties of the round drive belts made of thermo-plastic elastomer, IOP Conference Series: Materials Science and Engineering, 776, 012107.
  • 36. Wałęsa K., Malujda I., Talaśka K. (2018), Butt welding of round drive belts, Acta Mechanica et Automatica, 12(2), 115–126.
  • 37. Wałęsa K., Malujda I., Wilczyński D. (2020), Experimental research of the thermoplastic belt plasticizing process in the hot plate welding, IOP Conference Series: Materials Science and Engineering, 776, 012011.
  • 38. Wałęsa K., Malujda M., Górecki J., Wilczyński D. (2019), The temperature distribution during heating in hot plate welding process, MATEC Web of Conferences, 254, 02033.
  • 39. Wałęsa K., Mysiukiewicz O., Pietrzak M., Górecki J., Wilczyński D. (2019), Preliminary research of the thermomechanical properties of the round drive belts, MATEC Web of Conferences, 254, 06007.
  • 40. Wanqing L., Changqing F., Xing Z., Youliang C., Rong Y., Donghong L. (2017), Morphology and thermal properties of polyurethane elastomer based on representative structural chain extenders, Thermochimica Acta, 653, 116–125.
  • 41. Wilczyński D., Malujda M., Górecki J., Domek G. (2019), Experimental research on the proces of cutting transport belts, MATEC Web of Conferences, 254, 05014.
  • 42. Winczek J., Modrzycka A., Gawrónska E. (2016), Analytical description of the temperature field induced by laser heat source with any trajectory, Procedia Engineering, 149, 553–558.
  • 43. Wojtkowiak D., Talaśka K. (2019), Determination of the effective geometrical features of the piercing punch for polymer composite belts, The International Journal of Advanced Manufacturing Technology, 104(1-4), 315–332.
  • 44. Wojtkowiak D., Talaśka K., Malujda I., Domek G. (2018), Estimation of the perforation force for polimer composite conveyor belts taking into consideration the shape of the piercing punch, The International Journal of Advanced Manufacturing Technology, 98(9–12), 2539–2561.
  • 45. Yousepour A., Hojjari M., Immarigeon J-P. (2004), Fusion Bonding/Welding of Thermoplastic Composites, Journal of Thermoplastic Composite Materials, 17, 303–341.
  • 46. Żuchowska D. (2000), Construction polymers (in Polish), WNT, Warszawa.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-315ba276-a44f-4959-b5b5-66b3c37d4a2b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.