Identyfikatory
Warianty tytułu
Porównanie dwóch konstrukcji hybrydowych łożysk magnetycznych
Języki publikacji
Abstrakty
The paper presents a comparative analysis of two various constructions of the hybrid magnetic bearings. For this purpose, the basic parameters of the magnetic bearings were defined. Additionally, new parameters are proposed in order to estimate nonlinearity of the magnetic force and cross-coupling between axes. Comparison of the magnetic bearing constructions was performed using 3 dimensional simulation models.
W artykule przedstawiono analizę porównawczą dwóch różnych konstrukcji hybrydowych łożysk magnetycznych. W tym celu, zdefiniowano podstawowe parametry wykorzystywane do opisu łożysk magnetycznych. Dodatkowo, zaproponowano nowe parametry w celu oszacowania nieliniowości siły magnetycznej oraz sprzężenia między osiami. Porównanie konstrukcji łożysk magnetycznych wykonano w oparciu o analizę 3 wymiarowych modeli symulacyjnych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
53--58
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Opole University of Technology, Department of Electrical Engineering and Mechatronics, ul. Prószkowska 76, 45-758 Opole
Bibliografia
- [1] Canders W-R, May H, Palka R, Topology and performance of superconducting magnetic bearings, COMPEL- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 17 (1998), No. 5/6, 628- 634.
- [2] Kozanecka D., Kozanecki Z., Łagodziński J., Active magnetic damper in a power transmission system, Communications in Nonlinear Science and Numerical Simulation, 16 (2011), No. 5, 2273-2278.
- [3] Schweitzer G., Maslen H., Magnetic bearings, theory, design, and application to rotating machinery, Springer, (2009).
- [4] Mystkowski A., Energy saving robust control of active magnetic bearings in flywheel, Acta Mechanica et Automatica, 6 (2012), No. 3, 72-76.
- [5] Piłat A., Active magnetic suspension and bearing, in G. Petrone and G. Cammarata, Recent advances in modelling and simulation, I-Tech Education and Publishing, (2008), 453-470.
- [6] Sikora B., Piłat A., Numerical model of the axial magnetic bearing with six cylindrical poles, Archives of Electrical Engineering, 68 (2019), No. 1, 195-208.
- [7] Graca P., Calculation and Verification of Magnetic Field Parameters in Axial Active Magnetic Bearing, Solid State Phenomena, 214 (2014), 143-150.
- [8] Olejnik A., Falkowski K. Passive Magnetic Bearings at the Rotary Application, Proceedings of the 9th International Conference on Rotor Dynamics, Mechanisms and Machine Science, 21 (2015), Springer, Cham, 1477-1487.
- [9] Falkowski K., Henzel M., High Efficiency Radial Passive Magnetic Bearing, Solid State Phenomena, 164 (2010), 360- 365.
- [10] Mystkowski A., Investigation of Passive Magnetic Bearing with Halbach-Array, Acta Mechanica et Automatica, 4 (2000), No. 4, 72-76.
- [11] Okada Y. Sagawa K., Suzuki E., Kondo R., Development and Application of Parallel PM Type Hybrid Magnetic Bearings, Journal of System Design and Dynamics, 3 (2009), No. 9, 531- 539.
- [12] Burcan J., Sławińska A., Self-controllable passive axial magnetic bearing, Tribologa, (2003), No. 4, 81-97.
- [13] Gosiewski Z. Wielofunkcyjne łożyska magnetyczne, Biblioteka Naukowa Instytutu Lotnictwa, Warszawa, (2003).
- [14] Ming Z., Yuhang L., Jixiu S., Fengxiang W., Force Analysis for Hybrid Radial Magnetic Bearing Biased by Permanent Magnet, Proceedings of 2005 International Conference on Electrical Machines and Systems, 27-29 September 2005, Nanjing, China, 1843-1837.
- [15] Jin Ch., Lv D., Yan X., Xiong F., Xu L., A novel eight-pole heteropolar radial-axial hybrid magnetic bearing, International Journal of Applied Electromagnetics and Mechanics, Vol. 60, (2019), 423-444.
- [16] Wu L., Wang D., Su Z., Wang K., Zhang X., Analytical Model of Radial PM biased Magnetic Bearing with Assist Poles, IEEE Transactions on Applied Superconductivity, Vol. 26, (2016), No. 7, 0610105.
- [17] Xu S., Sun J. Decoupling Structure for Heteropolar Permanent Magnet Biased Radial Magnetic Bearing With Subsidiary Air- Gap, IEEE Transactions on Magnetics, Vol. 50, (2014), No. 8, 8300208.
- [18] Ji L., Xu L., Jin Ch., Research on a Low Power Consumption Six-Pole Heteropolar Hybrid Magnetic Bearing, IEEE Transactions on Magnetics, 49 (2013), No. 8, 4918-4926.
- [19] Reisinger M., Amrhein W., Silber S., Redemann Ch., Jenckel P., Development of a low cost permanent magnet biased bearing, Proceedings of the 9th International Symposium on Magnetic Bearings, 3-6 August 2004, Lexington, USA.
- [20] Wajnert D., Analysis of the cross-coupling effect and magnetic force nonlinearity in the 6-pole radial hybrid magnetic bearing, International Journal of Applied Electromagnetics and Mechanics, Vol. 61, (2019), 43-57.
- [21] Ansoft Maxwell 3D, User Guide, Pittsburg, 2006.
- [22] Piłat A., PD control strategy for 3 coils AMB, Proceedings of the 10th International Symposium on Magnetic Bearing, August 21–23, 2006, Martigny, Switzerland, 34-39.
- [23] Wajnert D., Tomczuk B., Koteras D., Calculation of the Magnetic Bearing Parameters, Proceedings of 2017 International Symposium on Electrical Machines (SME 2017), 18-21 June 2017, Naleczow, Poland, 1-5.
- [24] Gosiewski Z., Mystkowski A., Robust control of active magnetic suspension: analytical and experimental results, Mechanical Systems and Signal Processing, 22 (2008), 1297-1303.
- [25] Tomczuk B., Koteras D., Waindok A., The influence of the leg cutting on the core losses in the amorphous modular transformers, Compel - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 34 (2015), No. 3, 840-850.
- [26] Wajnert D., Tomczuk B., Simulation for the Determination of the Hybrid Magnetic Bearing's Electromagnetic Parameters, Przegląd Elektrotechniczny, 93 (2017), Nr 2, 157-160.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3155b0d1-9794-4667-b353-276354f772f3