PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An effective approach to Picard-Vessiot theory and the Jacobian Conjecture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present a theorem concerning an equivalent statement of the Jacobian Conjecture in terms of Picard-Vessiot extensions. Our theorem completes the earlier work of T. Crespo and Z. Hajto which suggested an effective criterion for detecting polynomial automorphisms of affine spaces. We show a simplified criterion and give a bound on the number of wronskians determinants which we need to consider in order to check if a given polynomial mapping with non-zero constant Jacobian determinant is a polynomial automorphism. Our method is specially efficient with cubic homogeneous mappings introduced and studied in fundamental papers by H. Bass, E. Connell, D.Wright and L. Drużkowski.
Rocznik
Tom
Strony
49--59
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • Faculty of Mathematics and Computer Science, Jagiellonian University Lojasiewicza 6, 30-348 Krak´ow
autor
  • Faculty of Mathematics and Computer Science, Jagiellonian University Lojasiewicza 6, 30-348 Krak´ow
autor
  • Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30-059 Krak´ow, Poland
Bibliografia
  • [1] Bass H., Connell E., Wright D., The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse, Bulletin of the American Mathematical Society, 1982, 7, pp. 287–330.
  • [2] Bondt M. de, Homogeneous Keller maps, Ph. D. thesis, July 2007, http://webdoc.ubn.ru.nl/mono/b/bondt−m−de/homokema.pdf.
  • [3] Campbell L.A., A condition for a polynomial map to be invertible, Math. Annalen,1973, 205, pp. 243–248.
  • [4] T. Crespo, Z. Hajto, Picard-Vessiot theory and the Jacobian problem, Israel Journal of Mathematics, 2011, 186, pp. 401–406.
  • [5] L. M. Drużkowski, An Effective Approach to Keller’s Jacobian Conjecture, Math. Ann., 1983, 264, pp. 303–313.
  • [6] L. M. Drużkowski, New reduction in the Jacobian conjecture, Univ. Iagell. Acta Math., 2001, 39, pp. 203–206.
  • [7] O.H. Keller, Ganze Cremona Transformationen, Monatsh. Math. Phys., 1939, 47, pp. 299–306.
  • [8] E. R. Kolchin, Picard-Vessiot theory of partial differential fields, Proceedings of the American Mathematical Society 1952, 3, pp. 596–603.
  • [9] S. Smale, Mathematical Problems for the Next Century, Mathematical Intelligencer, 1998, 20, pp. 7–15.
  • [10] D. Yan, A note on the Jacobian Conjecture, Linear Algebra and its Applications, 2011, 435, pp. 2110–2113.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-315199fd-2339-4a1d-8e1c-947af6105f1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.