Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present a theorem concerning an equivalent statement of the Jacobian Conjecture in terms of Picard-Vessiot extensions. Our theorem completes the earlier work of T. Crespo and Z. Hajto which suggested an effective criterion for detecting polynomial automorphisms of affine spaces. We show a simplified criterion and give a bound on the number of wronskians determinants which we need to consider in order to check if a given polynomial mapping with non-zero constant Jacobian determinant is a polynomial automorphism. Our method is specially efficient with cubic homogeneous mappings introduced and studied in fundamental papers by H. Bass, E. Connell, D.Wright and L. Drużkowski.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
49--59
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Faculty of Mathematics and Computer Science, Jagiellonian University Lojasiewicza 6, 30-348 Krak´ow
autor
- Faculty of Mathematics and Computer Science, Jagiellonian University Lojasiewicza 6, 30-348 Krak´ow
autor
- Faculty of Applied Mathematics, AGH University of Science and Technology al. Mickiewicza 30, 30-059 Krak´ow, Poland
Bibliografia
- [1] Bass H., Connell E., Wright D., The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse, Bulletin of the American Mathematical Society, 1982, 7, pp. 287–330.
- [2] Bondt M. de, Homogeneous Keller maps, Ph. D. thesis, July 2007, http://webdoc.ubn.ru.nl/mono/b/bondt−m−de/homokema.pdf.
- [3] Campbell L.A., A condition for a polynomial map to be invertible, Math. Annalen,1973, 205, pp. 243–248.
- [4] T. Crespo, Z. Hajto, Picard-Vessiot theory and the Jacobian problem, Israel Journal of Mathematics, 2011, 186, pp. 401–406.
- [5] L. M. Drużkowski, An Effective Approach to Keller’s Jacobian Conjecture, Math. Ann., 1983, 264, pp. 303–313.
- [6] L. M. Drużkowski, New reduction in the Jacobian conjecture, Univ. Iagell. Acta Math., 2001, 39, pp. 203–206.
- [7] O.H. Keller, Ganze Cremona Transformationen, Monatsh. Math. Phys., 1939, 47, pp. 299–306.
- [8] E. R. Kolchin, Picard-Vessiot theory of partial differential fields, Proceedings of the American Mathematical Society 1952, 3, pp. 596–603.
- [9] S. Smale, Mathematical Problems for the Next Century, Mathematical Intelligencer, 1998, 20, pp. 7–15.
- [10] D. Yan, A note on the Jacobian Conjecture, Linear Algebra and its Applications, 2011, 435, pp. 2110–2113.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-315199fd-2339-4a1d-8e1c-947af6105f1d