Accepted, unedited articles published online and citable.
The final edited and typeset version of record will appear in future

Schedae Informaticae Vol. 25 (2016): 49-59
doi: 10.4467/2083847651.17.004.8150

An Effective Approach to Picard-Vessiot Theory and the
Jacobian Conjecture

PAWEL BOGDAN'*, ZBIGNIEW HAJTO!, ELZBIETA ADAMUS?T
!Faculty of Mathematics and Computer Science, Jagiellonian University
Lojasiewicza 6, 30-348 Krakéw
e-mail: pawel.bogdanQuj.edu.pl, zbigniew.hajto@Quj.edu.pl
2Faculty of Applied Mathematics, AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Krakéw, Poland

e-mail: esowa@agh.edu.pl

Abstract. In this paper we present a theorem concerning an equivalent state-
ment of the Jacobian Conjecture in terms of Picard-Vessiot extensions. Our
theorem completes the earlier work of T. Crespo and Z. Hajto which suggested
an effective criterion for detecting polynomial automorphisms of affine spaces.
We show a simplified criterion and give a bound on the number of wronskians
determinants which we need to consider in order to check if a given polynomial
mapping with non-zero constant Jacobian determinant is a polynomial auto-
morphism. Our method is specially efficient with cubic homogeneous mappings
introduced and studied in fundamental papers by H. Bass, E. Connell, D. Wright
and L. Druzkowski.
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1. Introduction

Let K denote an algebraically closed field of characteristic zero. Let n > 0 be a fixed
integer and let F' = (Fy,...,F,) : K™ — K™ be a polynomial mapping, i.e. F; €
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K[Xi,...,X,] fori=1,...,n. We consider the Jacobian matrix Jp = [%}%hgi,jén-
The Jacobian Conjecture states that if det(Jp) is a non-zero constant, then F' has an
inverse, which is also polynomial.

The Jacobian Conjecture is one of Stephen Smale’s problems (cf. [9], Problem 16),
which are a list of important problems in mathematics for the twenty-first century.
Originally the conjecture was formulated for n = 2 by O. Keller (cf. [7]). In 1982
H. Bass, E. Connell and D. Wright ([1]) showed that the general case follows from
the case where n > 2 and F = (X; + Hy,...,X,, + H,,) and where each H; is zero
or homogeneous of degree 3. One year later L. Druzkowski ([5]) improved this result
proving that if the Jacobian Conjecture is true for n > 2 and

F= (XlJr(ialej)g,n-,XnJr(iaanj)g)a (1)

then it holds in general. A polynomial mapping F of the form (1) with constant
Jacobian is called a Druzkowski mapping. In 2001 Druzkowski [6] proved that in his
reduction (1) it is enough to assume that the matrix A = [a;;] is nilpotent of degree
2, ie. A2 =0.

In 2011 T. Crespo and Z. Hajto generalized a classical theorem of L. A. Camp-
bell ([3]) by proving an equivalent statement of the Jacobian Conjecture in terms of
Picard-Vessiot extensions (cf. [4], Theorem 2). Condition 4 in Theorem 2 in the work
of Crespo and Hajto suggested an effective criterion for polynomial automorphisms of
affine spaces. However, the effectivity is obstructed by the big number of generalized
wronskians which have to be considered when the dimension of the affine space is
growing. In this paper we present a simplified criterion for a polynomial automor-
phism of an affine space and prove that if the dimension of the space is n then it is

enough to consider —n?(n + 1) — n generalized wronskians. We believe that a deeper

analysis of our algorithm may lead to the proof of the Jacobian Conjecture.
Let (F,Ar) be a partial differential field with an algebraically closed field of

constants Cr and Ar = {01,...,0n}. Let us consider a linear partial differential
system in matriz form over F, i.e. a system of equations of the form
OY)=AY, i=1,...,m, A; € My xn(F). (2)

A matrix y € GL,(K), where K is a differential field extension of F, is called a fun-
damental matriz for the system (2) if 0;(y) = Ay for i = 1,...,m. We say that the
system (2) is integrable if it has a fundamental matrix. A differential field extension
(G,Ag) of (F,Ar) is a Picard-Vessiot extension for the integrable system (2) if the
following holds: Cg = C'r, there exists a fundamental matrix y = {y;;} € GL,(G)
and G is generated over F as a field by the entries of y, i.e. G = F({yi;}1<ij,<n)-
There is another definition of a Picard-Vessiot extension, formulated by Kolchin in
[8]. Let F be a partial differential field of characteristic zero with Az = {04,...,0mn}
and algebraically closed field of constants Cx. Let G be a differential field extension
of F. Let Yi,...,Y, denote indeterminates and let © denote the free commutative
multiplicative semigroup generated by the elements of Ax. So 6 € © is a differen-
tial operator of the form 3? ...0lm where i1, ...,i, € Zy U{0}. Let us denote by
©O(k) the subset of © of the elements of order less than or equal to k. The determi-
nant det(0;y;)1<sj<n is called a generalized wronskian determinant and denoted by
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We,...0,(W1,...,yn). Kolchin called G a Picard- Vessiot extension of F if Cg = Cr and
there exist 71,...,m, € G linearly independent over Cx such that G = F(n1,...,n,)
and

Vo,,...0, € O(n) Wor,..00 (1,2 11n)

: e F 3
Woos....00, (7717 S 77771) ( )

for some fixed 0oz, . .. 6o, such that Wy, g, (m,--.,1n) # 0.

Theorem 1 in [4] establishes the equivalence between the two definitions of Picard-
Vessiot extension of partial differential fields presented above. Theorem 2 in [4], which
is a differential version of the classical theorem of Campbell, gives an equivalent for-
mulation of the Jacobian Conjecture. Let K be an algebraically closed field of char-
acteristic zero and let F = (Fy,..., F,) : K™ — K™ be a polynomial map such that
det(Jp) = ¢ € K \ {0}. We can equipp K(z1,...,x,) with the Nambu derivations,
i.e. derivations d1,...,0d, given by

9
(;1 Tzl
C=0EDT
9
61’7, 8711

Observe that K(Fy,...,F,) = K(Fy,...,F,), i.e. K(Fy,...,F,) is stable under
91, -.,0pn. Moreover if det(Jr) = 1, then J;l = [0;2i]1<ij<n-

The following theorem is a reformulation of theorems 1 and 2 in [4] in the form
we will use in the sequel.

Theorem 1. Let K and F be as above. Then the following conditions are equivalent:

1) F is a polynomial automorphism

2) The matriz

1 x U
0 513’51 e 51$n
W=1. .

is a fundamental matriz for an integrable system

5kY:AkY, k:O,...,Tl,

where we are taking 6 = id, with Ax € My 1) (n41) (K (F1, ..., Fy)).
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2. Wronskian criterion

Theorem 1 gives a method of checking if a given polynomial map F' is a polynomial
automorphism. If we denote zy = 1, then we may write W = [§;x;]; j=0,1,.. n- Let
us assume that detWW = 1 (which is equivalent to det(Jp) = 1). We are going to
find Ay = 6, W - WL k =1,2,...,n in order to check if the entries of A;’s lie in
K(Fy,...,F,). We have that

0 5k:171 . 5kxn
0 6k51x1 NN 5k61xn
0 (5;452%1 NN (Sk(San
W =1 ... e = [wl]‘cj]i7j:0,17...,n’ where wfj = 0p0;x;.
0 6k5i-731 . (5k6ixn
L 0 6k5n$1 6k6n:cn i

Let us find W1 = ([Dij]i7j=0717.__7n)T7 where D;; denote the adjoint determinant of
the element 6;x; of matrix W. We obtain that

D()o:l and VjZ].IDOj:O,

X1 . In
61%1 . 51(En
D,y = (—1)H—1+1 0i—1X1 ... Oj—1xy | = (*1)Z+Odet([5s$t]s:0,1,...,n;s;ﬁi;t:l,...n)-
(5,‘+1.T1 (5i+1xn
opT1 ... OpTn
For 7,7 > 1 we get
1 I Tj—1 Tj41 I
0 (51%1 NN (51.’Ej,1 (51.’Ej+1 . 51xn
Dij = (—1)i+j 0 di—iz1 ... di—1mj—1 0i—1%j41 ... Oi—1Tp
0 51'_;,_1931 e 5i+1xj—1 51+15€j+1 e 51‘_;,_137”
0 (Snl’l . (Snl‘j,1 (Snl‘jJrl . 5nxn
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So Dij = (1) det([0s4]s,1=0,1,...m; sit5) = (—1)"det([0sme)se=1,... m; si,0)
and consequently W1 = [B;;]; j—0.1,....n, where

1 I Ti—1

0 (51$1 611’1‘,1
Bij - (—1)i+jD]’i = (—I)H_j 0 5j_1$1 (;j—lxi—l

0 5j+1$1 5j+1xi71

0 5n$1 5',1{131‘_1

_ [,k
We compute A = [aij]i’j:0717___7n

Tit1
01 Ti41

5j—1xi+l
5j+1$i+1

6n-77i+1

In
61-Tn

5j—1$n
5j+1$n

Ony

= 0,W - W~L. We obtain af, = 0, i.e. the first

column (i.e. the column indexed by j=0) is a zero column. Moreover for j > 1

a’gj = Z 5k50zr . Brj = Z (ser . Brj = §k$1 . (71)1+j
r=1 r=1

B ) (_1)n+j

0111 012
6j_1371 5j_1$2

=| Opxy 0o
djt121 054122

5nx1 5n172

0121

5]‘—1%1
0j+121

5n1'1

511'71

5j—1$n
6kxn
6j+1$n

InTp

012

dj_172
01172

5n.%‘2

01Tp—1

5j—1$n—1
5j+193n—1

5nxn71

If 7,7 > 1, then afj =" 0kb;x, - Byj, this means we have

af; = 0pdizy - (1)1

012

5]'71%2
0j+1%2

(5nx2

01%n

§j71xn
5j+1$n

OnTn

5151371,

53'71!1%
0j+1Tn

OnTn
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(511‘1 51-Tn—1
; 6‘_1131 5'_156 —1
e Oy - (=) | I j=1Tn-1 | _

k ( ) 5j+1£€1 . 5j+1:17n—1
(5n$1 . (Sn.’En,l

511101 51%2 . (51.’En

5j_1$1 5]‘_1132 5j—11'n

= 5k5ix1 5k6ix2 5k6ixn

5j+11'1 5j+11‘2 . 5j+11'n

67,“1;1 (Snl‘Q N 677,-1:1'7,

The total number of considered determinants is n(n + 1)2, since for every J;, we

have (n + 1)? of them and k = 1,...,n. However for each A, we can ignore the
first row and the first column (i.e. the row and the column indexed by 0), since they
consist of constant elements. Consequently, we can omit 2n + 1 of elements for each
Ap. So there are n? wronskians left. We can easily observe that for every j = 1,...,n
and for k # i we have afj = a};j. So we can omit (Z) of determinants for each j. Due
to the lemma given below we can omit even more determinants.

Lemma 1. Let (K,") be a differential field and let A = [a;;]i j=1,...n € GL,(K) be a
nonsingular matriz with entries in K. Then

ailr a2 ... Qin
, a1 a2 N ¢ £ 7)
(detA) =| . L . =
Ap1 A2 ve.o Qpn
/ I !
a7 Qyg e Qg ailr  ai2 ... Q1p ailr  ai2 ... Q1p
/ / /
az1 a2 .. Q2p A91 Qoo e Qo L az1 G222 .. Q2p
l ! 1

an1  anp2 N ) anp1  Ap2 N ) a,1 Qpo R .

! l /
aiq ai2 . A1n aiq (5D N AT ail ai2 . ay,
/ ! !
Aoq as2 . a2n a1 Q9o ... Qon a21 as2 . (259

= + . + M +
! l !
a,1  ap2 N P ) anl  Qpo ce. Apn anp1  ap2 e Ay

Let us use lemma (1) to differentiate detW = 1 with respect to each d, k =
1,...,n. We get that
51I1 e §1In
ol oo =

OnT1 ... OpZn
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(51.131
(5%.731 (Sfl‘n 5152%‘1
— + 53331
On1 Onn,
(Sn.’L‘l
0171
On
5n$1
61{E1
(5n61.’171 6n61.’L‘n 6n62x1
52.T1 523571
= . | %m
OnT1 Onn, 5,

Let us go back to considerations concerning the matrix Ag.

61-7771
51(5233” 61]:1
03Tn |4, 4 :
: Op—1T1
(Snl'n 61671-'171
511'71
OnTn
51:Un
(Sn(SQQZ‘n
03Tn |4 . 4
OnTn

0121

Op—121
2
5nx1

95

51l‘n

5n71xn
61677,(571

51xn

Jn—lzn
2
02T,

We can use the

equations given above to observe that for each k = 1,...,n we have af, +...+af, = 0.

So for example

kK _ _ k k k
Ol = —011 = -+ = O3 p—1 — Qg 1,k4+1 — - -

So we can omit n determinants more.

number of wronskian determinants

2

Hence it is enough to check the following

ng—n-(n)—n:ns—;nQ(n—l)—n:;nz(n—kl)—n. (4)

Let us observe that the number given in (4) is optimal, e.g. for n = 2, we have to

consider 4 wronskian determinants.

3. Examples

In this section in order to explain how our criterion works for detecting polynomial
automorphisms we shall present two explicit examples.

Ezxample 1. Let us consider a well-known wild automorphism: the Nagata auto-

morphism:

Fy = 21 — 229(z321 + 23) — 23(2371 + 23)?

Fy =29+ 1‘3((E3£L‘1 + LL‘%)

=0
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F3:133

Using the computer algebra system Maplel8 we first compute that det(Jr) = 1 and
next the entries of the matrices [afj]ijzl 55 for k=1,2,3. We obtain the following
results:

k=1:
al, = —ady — aly = =223 (2123 — 22323 — 2w9x3 + 1) = AFLFy — 2F3

Remark 1. In order to obtain the equality given above, we use the following method.
Once computed ai; we define the following sequence of polynomials in C[z1, 22, 73],
Py(z1,22,23) = ai(z1,22,73),
Py(xy,29,23) = Po(Fy, Fp, F3) — Po(w1, 72, 23),
and, assuming Pj_; is defined,
Py(w1, 20, 73) = Py1(F1, Fp, F3) — Py1(21, 02, 73).
It is easy to prove that for a positive integer m, we have

m—1

P(xy,z2,23) = Z V!'P(Fy, Fy, F3) + (—1)™ Py (1, 22, 23).
=0

In particular, if we assume that for some integer m, Py, (21, 2, z3) = 0, then

m—1
P(zy,79,73) = »_ (—1)'P(Fy, Fy, F3).
1=0

In considered case we obtain
Po(z1, 22, 73) = —223(—22103 — 22322 — 22923 + 1),
Py (21,72, 23) = da1 2§ + 4a32],
Py(xy,22,23) =0
and hence ah = Po(Fl, FQ, Fg) — Pl(Fl, FQ,F3) = 4.F2_F§L — 2F§’
In an analogous way we get all equalities given below.

1 _ 5 _ 5
a9 = —2z3 = —2F3

1 _
aj3 =0

aly = (—4wyx3 — 42323 — da9w3 + 223) (22123 — 22203 — 27973 + 1) = 8FZF —

8FyF2 + 2F;

aky = (—4z 23 — 42323 — dwox? + 223)22 = —AFLFf + 2F3
azs =0
al, = —4a3x§ — 12z1x2x3 — 121‘1582:173 4x2x3 — 12x1z2x3 — 241711'2x3 121‘2563 +

1Ox1x3 + 812324 — 20303 + 16212203 + 122323 + 62323 + 220 = AFFF3 + 4P Fo 3 —
2F F§ + 2F,
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aie = 2:1:1x3 + 4z11’2x3 + 27323 + 4107 + dadah — Aoy o) — 22303 — 2w02% — 205 =
20 Ff — 2Py F3 — 2F3

1
az3 =0
k=2

a al

1= 9

aig = a%2

a3, = 16x1x3 + 48x3x3xT] + 48x1x2x3 + 16x2x3 + 48x1x2m3 + 96z 2325 + 48535 —
24x1x3+24m2x3—48x1x2m3 3223 x3+12x1x3 12x2x3+12x2 = 16F3F2 24F22F3+
12F,

a3y = —a?, — a3y = —8x3x] — 16w1232§ — 832l — 16z 2005 — 162323 + 8xq2d +
8ro1l — 225 = —8F3F3 + 8L F3 — 2F;

a3; =0

a3, = —8{L‘1£L'3 32x1m2x3 483:1962;103 32m1x2x3 82815 — 3223 w92l — 96232325 —
96:51302373 32$2$3+24$1$3+24$1.’E2$3 24x Tivg— 243:2953—1—64:513023:3+96x1:62x§+
322523 — 102323 + 3621 w323 + 3825703 — 1201 w023 +4a3 + 211 = 8FIF3F; —8F FoF3+
8FS + 21

a3, = 4x1x3—|—12x1x2x3—|—12x1m2x3+4x2x3—|—12x1x2x3+24x1m2x3+12x2x3 10$1m3
8x12375+ 20523 — 16212003 — 122323 62503 — 229 = —AF\ Fo F§+2F F3 —AF3 F3—2F,

2 _

az3 =0
k=3:

3 _ 1
aél = ai{)l
0411))2 = a:fQ
aé3 = a%3 =0
Q) = a3z
Qg = Q32

37 _ 97 _
azg = az3 =0

a3, = 4x3zi0 + 20:1713:2z3 + 4Ox1x2z3 + 403:1:22:173 + 20$1x2x3 + 43:5%3 + 20xtzons +

SOzi‘xg’xg + 120222528 + 8Ox1z2x3 + 20932:173 - 18z1:c3 - 32x1x2x3 + 12x1x%x§ +
48x1x2x3+22x2x3 64x1x2x3—152x1x2w3 112x1m2x3—24x2m3+16x1x3 3623323 —
1003:1:52:63 — 48x2x3 + 2823 w973 + 8x12313 — 1625 — 22375 + Sx103 = AFEFRF? —
2F2F; + 8F\ F}

a3, = 2z1x3 8x1x2x3 12m1x2x3 8:E1:Z?21’3 2x2x3 - 8x1z2x3 24:171502zg
24:L'1$2(E3 — 8$2x3 8x1:c3 + 12w1x2x3 42823 + 2023 ro7s + 32712523 + 122523 —
4x1x3 + 8x1x2m3 + 10m2x3 + 4x2 —2x1 = —2F2F3 4F1FyF5 — 2,
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3 _ .3 3 _
a3z = —ay; — a3 =0

Ezample 2. Recently Dan Yan ([10]) has proved that the Jacobian Conjecture is
true for the Druzkowski mappings in dimension n < 9, however only in the case when
the matrix A (cf.(1)) has no zeros on its diagonal, and for general n and rankA <
4. Moreover Michiel de Bondt in his thesis [2] proved the validity of the Jacobian
Conjecture for all Druzkowski mappings in dimension n < 8. Let us consider the
following Druzkowski mapping in dimension 13.

Fy
F
F3
Iy
s
Fs
F

Xi4 (AXg 4 35— X — X7 — LXg + 1 Xg + X35)°
Xo+ (§Xa+ X5 — 5 Xe — X7 — X+ 3 X9 — X13)3
Xs+ (§Xa+ X5 — 53X — g X7 — §Xs + %XQ)B

Xo+ (5X1+ X — 5 X3+ X12)i3

Xs+ (X1 4+ 1, — X5 — X35)°

Xo+ (X1 + X, — 1x3)°

Xr4+ (—3X3+ g X0+ +X11 + X13)3

X+ (—3 X3+ $ X0+ £ X911 — X13)3

Xo+ (—5Xs+ §X10 + %Xn)s

Xio+ (§Xa+§Xs — 5X6 — X7 — ¢ Xs + 3 X0 + X12)3
X+ (§Xa+ X5 — 53X — g X7 — § X5+ 3 X0 — X12)3
X12
X3

In the above example rank(A) = 5. The computation of wronskians is involved,
therefore we have presented it separately in our website http : //crypto.ii.uj.edu.pl/galois/.

Remark 2. In his landmark paper [3] L.A. Campbell studied in fact general covering
maps. Let us observe that our computational approach can be used as well for detect-
ing Galois coverings. In this case we can not assume that the Jacobian determinant
is a non-zero constant, however the computations are analogous.
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