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Abstract. In this paper we present a theorem concerning an equivalent state-

ment of the Jacobian Conjecture in terms of Picard-Vessiot extensions. Our

theorem completes the earlier work of T. Crespo and Z. Hajto which suggested

an effective criterion for detecting polynomial automorphisms of affine spaces.

We show a simplified criterion and give a bound on the number of wronskians

determinants which we need to consider in order to check if a given polynomial

mapping with non-zero constant Jacobian determinant is a polynomial auto-

morphism. Our method is specially efficient with cubic homogeneous mappings

introduced and studied in fundamental papers by H. Bass, E. Connell, D. Wright

and L. Drużkowski.
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1. Introduction

Let K denote an algebraically closed field of characteristic zero. Let n > 0 be a fixed
integer and let F = (F1, . . . , Fn) : Kn → Kn be a polynomial mapping, i.e. Fi ∈
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K[X1, . . . , Xn] for i = 1, . . . , n. We consider the Jacobian matrix JF = [ ∂Fi

∂Xj
]1≤i,j≤n.

The Jacobian Conjecture states that if det(JF ) is a non-zero constant, then F has an
inverse, which is also polynomial.

The Jacobian Conjecture is one of Stephen Smale’s problems (cf. [9], Problem 16),
which are a list of important problems in mathematics for the twenty-first century.
Originally the conjecture was formulated for n = 2 by O. Keller (cf. [7]). In 1982
H. Bass, E. Connell and D. Wright ([1]) showed that the general case follows from
the case where n ≥ 2 and F = (X1 + H1, . . . , Xn + Hn) and where each Hi is zero
or homogeneous of degree 3. One year later L. Drużkowski ([5]) improved this result
proving that if the Jacobian Conjecture is true for n ≥ 2 and

F = (X1 + (
n∑

j=1

a1jXj)
3, . . . , Xn + (

n∑

j=1

anjXj)
3), (1)

then it holds in general. A polynomial mapping F of the form (1) with constant
Jacobian is called a Drużkowski mapping. In 2001 Drużkowski [6] proved that in his
reduction (1) it is enough to assume that the matrix A = [aij ] is nilpotent of degree
2, i.e. A2 = 0.

In 2011 T. Crespo and Z. Hajto generalized a classical theorem of L. A. Camp-
bell ([3]) by proving an equivalent statement of the Jacobian Conjecture in terms of
Picard-Vessiot extensions (cf. [4], Theorem 2). Condition 4 in Theorem 2 in the work
of Crespo and Hajto suggested an effective criterion for polynomial automorphisms of
affine spaces. However, the effectivity is obstructed by the big number of generalized
wronskians which have to be considered when the dimension of the affine space is
growing. In this paper we present a simplified criterion for a polynomial automor-
phism of an affine space and prove that if the dimension of the space is n then it is

enough to consider
1

2
n2(n+ 1)− n generalized wronskians. We believe that a deeper

analysis of our algorithm may lead to the proof of the Jacobian Conjecture.
Let (F ,∆F ) be a partial differential field with an algebraically closed field of

constants CF and ∆F = {∂1, . . . , ∂m}. Let us consider a linear partial differential
system in matrix form over F , i.e. a system of equations of the form

∂i(Y ) = AiY, i = 1, . . . ,m, Ai ∈Mn×n(F). (2)

A matrix y ∈ GLn(K), where K is a differential field extension of F , is called a fun-
damental matrix for the system (2) if ∂i(y) = Aiy for i = 1, . . . ,m. We say that the
system (2) is integrable if it has a fundamental matrix. A differential field extension
(G,∆G) of (F ,∆F ) is a Picard-Vessiot extension for the integrable system (2) if the
following holds: CG = CF , there exists a fundamental matrix y = {yij} ∈ GLn(G)
and G is generated over F as a field by the entries of y, i.e. G = F({yij}1≤i,j,≤n).

There is another definition of a Picard-Vessiot extension, formulated by Kolchin in
[8]. Let F be a partial differential field of characteristic zero with ∆F = {∂1, . . . , ∂m}
and algebraically closed field of constants CF . Let G be a differential field extension
of F . Let Y1, . . . , Yn denote indeterminates and let Θ denote the free commutative
multiplicative semigroup generated by the elements of ∆F . So θ ∈ Θ is a differen-
tial operator of the form ∂i11 . . . ∂imm , where i1, . . . , im ∈ Z+ ∪ {0}. Let us denote by
Θ(k) the subset of Θ of the elements of order less than or equal to k. The determi-
nant det(θiyj)1≤i,j≤n is called a generalized wronskian determinant and denoted by
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Wθ1,...θn(y1, . . . , yn). Kolchin called G a Picard-Vessiot extension of F if CG = CF and
there exist η1, . . . , ηn ∈ G linearly independent over CF such that G = F〈η1, . . . , ηn〉
and

∀θ1, . . . θn ∈ Θ(n) :
Wθ1,...θn(η1, . . . , ηn)

Wθ01,...θ0n(η1, . . . , ηn)
∈ F (3)

for some fixed θ01, . . . θ0n such that Wθ01,...θ0n(η1, . . . , ηn) 6= 0.

Theorem 1 in [4] establishes the equivalence between the two definitions of Picard-
Vessiot extension of partial differential fields presented above. Theorem 2 in [4], which
is a differential version of the classical theorem of Campbell, gives an equivalent for-
mulation of the Jacobian Conjecture. Let K be an algebraically closed field of char-
acteristic zero and let F = (F1, . . . , Fn) : Kn → Kn be a polynomial map such that
det(JF ) = c ∈ K \ {0}. We can equipp K(x1, . . . , xn) with the Nambu derivations,
i.e. derivations δ1, . . . , δn given by




δ1
...
δn


 = (J−1F )T




∂
∂x1

...
∂
∂x1


 .

Observe that K〈F1, . . . , Fn〉 = K(F1, . . . , Fn), i.e. K(F1, . . . , Fn) is stable under
δ1, . . . , δn. Moreover if det(JF ) = 1, then J−1F = [δjxi]1≤i,j≤n.

The following theorem is a reformulation of theorems 1 and 2 in [4] in the form
we will use in the sequel.

Theorem 1. Let K and F be as above. Then the following conditions are equivalent:

1) F is a polynomial automorphism

2) The matrix

W =




1 x1 . . . xn
0 δ1x1 . . . δ1xn
...

...
. . .

...
0 δnx1 . . . δnxn




is a fundamental matrix for an integrable system

δkY = AkY, k = 0, . . . , n,

where we are taking δ0 = id, with Ak ∈M(n+1)×(n+1)(K(F1, . . . , Fn)).
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2. Wronskian criterion

Theorem 1 gives a method of checking if a given polynomial map F is a polynomial
automorphism. If we denote x0 = 1, then we may write W = [δixj ]i,j=0,1,...,n. Let
us assume that detW = 1 (which is equivalent to det(JF ) = 1). We are going to
find Ak = δkW ·W−1, k = 1, 2, . . . , n in order to check if the entries of Ak’s lie in
K(F1, . . . , Fn). We have that

δkW =




0 δkx1 . . . δkxn
0 δkδ1x1 . . . δkδ1xn
0 δkδ2x1 . . . δkδ2xn
. . . . . .
0 δkδix1 . . . δkδixn
. . . . . .
0 δkδnx1 . . . δkδnxn




=
[
ωkij
]
i,j=0,1,...,n

, where ωkij = δkδixj .

Let us find W−1 =
(
[Dij ]i,j=0,1,...,n

)T
, where Dij denote the adjoint determinant of

the element δixj of matrix W . We obtain that

D00 = 1 and ∀j ≥ 1 : D0j = 0,

Di0 = (−1)i+1+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 . . . xn
δ1x1 . . . δ1xn
. . . . . . . . .

δi−1x1 . . . δi−1xn
δi+1x1 . . . δi+1xn
. . . . . . . . .
δnx1 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)i+0det
(
[δsxt]s=0,1,...,n; s6=i; t=1,...n

)
.

For i, j ≥ 1 we get

Dij = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 . . . xj−1 xj+1 . . . xn
0 δ1x1 . . . δ1xj−1 δ1xj+1 . . . δ1xn
...

...
...

...
...

0 δi−1x1 . . . δi−1xj−1 δi−1xj+1 . . . δi−1xn
0 δi+1x1 . . . δi+1xj−1 δi+1xj+1 . . . δi+1xn
...

...
...

...
...

0 δnx1 . . . δnxj−1 δnxj+1 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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So Dij = (−1)i+jdet
(
[δsxt]s,t=0,1,...,n; s6=i,t6=j

)
= (−1)i+jdet

(
[δsxt]s,t=1,...,n; s6=i,t6=j

)

and consequently W−1 = [Bij ]i,j=0,1,...,n, where

Bij = (−1)i+jDji = (−1)i+j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 . . . xi−1 xi+1 . . . xn
0 δ1x1 . . . δ1xi−1 δ1xi+1 . . . δ1xn
...

...
...

...
...

0 δj−1x1 . . . δj−1xi−1 δj−1xi+1 . . . δj−1xn
0 δj+1x1 . . . δj+1xi−1 δj+1xi+1 . . . δj+1xn
...

...
...

...
...

0 δnx1 . . . δnxi−1 δnxi+1 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We compute Ak =
[
akij
]
i,j=0,1,...,n

= δkW ·W−1. We obtain aki0 = 0, i.e. the first

column (i.e. the column indexed by j=0) is a zero column. Moreover for j ≥ 1

ak0j =
n∑

r=1

δkδ0xr ·Brj =
n∑

r=1

δkxr ·Brj = δkx1 · (−1)1+j

∣∣∣∣∣∣∣∣∣∣∣∣

δ1x2 . . . δ1xn
. . . . . . . . .

δj−1x2 . . . δj−1xn
δj+1x2 . . . δj+1xn
. . . . . . . . .
δnx2 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣

+ . . .

. . .+ δkxn · (−1)n+j

∣∣∣∣∣∣∣∣∣∣∣∣

δ1x1 . . . δ1xn−1
. . . . . . . . .

δj−1x1 . . . δj−1xn−1
δj+1x1 . . . δj+1xn−1
. . . . . . . . .
δnx1 . . . δnxn−1

∣∣∣∣∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1x1 δ1x2 . . . δ1xn
...

...
. . .

...
δj−1x1 δj−1x2 . . . δj−1xn
δkx1 δkx2 . . . δkxn
δj+1x1 δj+1x2 . . . δj+1xn

...
...

. . .
...

δnx1 δnx2 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

{
0 ; k 6= j
1 ; k = j

.

If i, j ≥ 1, then akij =
∑n
r=1 δkδixr ·Brj , this means we have

akij = δkδix1 · (−1)1+j

∣∣∣∣∣∣∣∣∣∣∣∣

δ1x2 . . . δ1xn
. . . . . . . . .

δj−1x2 . . . δj−1xn
δj+1x2 . . . δj+1xn
. . . . . . . . .
δnx2 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣

+ . . .

Accepted, unedited articles published online and citable.  
The final edited and typeset version of record will appear in future



F 
I R

 S
 T

   
V I 

E W

54

. . .+ δkδixn · (−1)n+j

∣∣∣∣∣∣∣∣∣∣∣∣

δ1x1 . . . δ1xn−1
. . . . . . . . .

δj−1x1 . . . δj−1xn−1
δj+1x1 . . . δj+1xn−1
. . . . . . . . .
δnx1 . . . δnxn−1

∣∣∣∣∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δ1x1 δ1x2 . . . δ1xn
...

...
. . .

...
δj−1x1 δj−1x2 . . . δj−1xn
δkδix1 δkδix2 . . . δkδixn
δj+1x1 δj+1x2 . . . δj+1xn

...
...

. . .
...

δnx1 δnx2 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The total number of considered determinants is n(n + 1)2, since for every δk we
have (n + 1)2 of them and k = 1, . . . , n. However for each Ak we can ignore the
first row and the first column (i.e. the row and the column indexed by 0), since they
consist of constant elements. Consequently, we can omit 2n+ 1 of elements for each
Ak. So there are n3 wronskians left. We can easily observe that for every j = 1, . . . , n
and for k 6= i we have akij = aikj . So we can omit

(
n
2

)
of determinants for each j. Due

to the lemma given below we can omit even more determinants.

Lemma 1. Let (K,′ ) be a differential field and let A = [aij ]i,j=1,...,n ∈ GLn(K) be a
nonsingular matrix with entries in K. Then

(detA)′ =

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣

′

=

=

∣∣∣∣∣∣∣∣∣

a′11 a′12 . . . a′1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a′21 a′22 . . . a′2n

...
...

. . .
...

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
+. . .+

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

a′n1 a′n2 . . . a′nn

∣∣∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣

a′11 a12 . . . a1n
a′21 a22 . . . a2n

...
...

. . .
...

a′n1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

a11 a′12 . . . a1n
a21 a′22 . . . a2n

...
...

. . .
...

an1 a′n2 . . . ann

∣∣∣∣∣∣∣∣∣
+ . . .+

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a′1n
a21 a22 . . . a′2n

...
...

. . .
...

an1 an2 . . . a′nn

∣∣∣∣∣∣∣∣∣

Let us use lemma (1) to differentiate detW = 1 with respect to each δk, k =
1, . . . , n. We get that

δ1

∣∣∣∣∣∣∣

δ1x1 . . . δ1xn
...

. . .
...

δnx1 . . . δnxn

∣∣∣∣∣∣∣
=
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=

∣∣∣∣∣∣∣

δ21x1 . . . δ21xn
...

. . .
...

δnx1 . . . δnxn

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

δ1x1 . . . δ1xn
δ1δ2x1 . . . δ1δ2xn
δ3x1 . . . δ3xn

...
. . .

...
δnx1 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣

+. . .+

∣∣∣∣∣∣∣∣∣

δ1x1 . . . δ1xn
...

. . .
...

δn−1x1 . . . δn−1xn
δ1δnx1 . . . δ1δnxn

∣∣∣∣∣∣∣∣∣
= 0

. . . . . . . . .

δn

∣∣∣∣∣∣∣

δ1x1 . . . δ1xn
...

. . .
...

δnx1 . . . δnxn

∣∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣∣

δnδ1x1 . . . δnδ1xn
δ2x1 . . . δ2xn

...
. . .

...
δnx1 . . . δnxn

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣

δ1x1 . . . δ1xn
δnδ2x1 . . . δnδ2xn
δ3x1 . . . δ3xn

...
. . .

...
δnx1 . . . δnxn

∣∣∣∣∣∣∣∣∣∣∣

+. . .+

∣∣∣∣∣∣∣∣∣

δ1x1 . . . δ1xn
...

. . .
...

δn−1x1 . . . δn−1xn
δ2nx1 . . . δ2nxn

∣∣∣∣∣∣∣∣∣
= 0

Let us go back to considerations concerning the matrix Ak. We can use the
equations given above to observe that for each k = 1, . . . , n we have ak11+. . .+aknn = 0.
So for example

akkk = −ak11 − . . .− akk−1,k−1 − akk+1,k+1 − . . .− aknn.

So we can omit n determinants more. Hence it is enough to check the following
number of wronskian determinants

n3 − n ·
(
n

2

)
− n = n3 − 1

2
n2(n− 1)− n =

1

2
n2(n+ 1)− n. (4)

Let us observe that the number given in (4) is optimal, e.g. for n = 2, we have to
consider 4 wronskian determinants.

3. Examples

In this section in order to explain how our criterion works for detecting polynomial
automorphisms we shall present two explicit examples.

Example 1. Let us consider a well-known wild automorphism: the Nagata auto-
morphism:

F1 = x1 − 2x2(x3x1 + x22)− x3(x3x1 + x22)2

F2 = x2 + x3(x3x1 + x22)
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F3 = x3

Using the computer algebra system Maple18 we first compute that det(JF ) = 1 and
next the entries of the matrices

[
akij
]
i,j=1,2,3

, for k = 1, 2, 3. We obtain the following

results:

k=1:
a111 = −a122 − a133 = −2x33(−2x1x

3
3 − 2x22x

2
3 − 2x2x3 + 1) = 4F2F

4
3 − 2F 3

3

Remark 1. In order to obtain the equality given above, we use the following method.
Once computed a111 we define the following sequence of polynomials in C[x1, x2, x3],

P0(x1, x2, x3) = a111(x1, x2, x3),
P1(x1, x2, x3) = P0(F1, F2, F3)− P0(x1, x2, x3),

and, assuming Pk−1 is defined,
Pk(x1, x2, x3) = Pk−1(F1, F2, F3)− Pk−1(x1, x2, x3).
It is easy to prove that for a positive integer m, we have

P (x1, x2, x3) =
m−1∑

l=0

(−1)lPl(F1, F2, F3) + (−1)mPm(x1, x2, x3).

In particular, if we assume that for some integer m, Pm(x1, x2, x3) = 0, then

P (x1, x2, x3) =
m−1∑

l=0

(−1)lPl(F1, F2, F3).

In considered case we obtain
P0(x1, x2, x3) = −2x33(−2x1x

3
3 − 2x22x

2
3 − 2x2x3 + 1),

P1(x1, x2, x3) = 4x1x
6
3 + 4x22x

5
3,

P2(x1, x2, x3) = 0
and hence a111 = P0(F1, F2, F3)− P1(F1, F2, F3) = 4F2F

4
3 − 2F 3

3

In an analogous way we get all equalities given below.

a112 = −2x53 = −2F 5
3

a113 = 0

a121 = (−4x1x
4
3 − 4x22x

3
3 − 4x2x

2
3 + 2x3)(−2x1x

3
3 − 2x22x

2
3 − 2x2x3 + 1) = 8F 2

2F
3
3 −

8F2F
2
3 + 2F3

a122 = (−4x1x
4
3 − 4x22x

3
3 − 4x2x

2
3 + 2x3)x23 = −4F2F

4
3 + 2F 3

3

a123 = 0

a131 = −4x31x
8
3 − 12x21x

2
2x

7
3 − 12x1x

4
2x

6
3 − 4x62x

5
3 − 12x21x2x

6
3 − 24x1x

3
2x

5
3 − 12x52x

4
3 +

10x21x
5
3 + 8x1x

2
2x

4
3− 2x42x

3
3 + 16x1x2x

3
3 + 12x32x

2
3 + 6x22x3 + 2x2 = 4F 2

2F3 + 4F1F2F
3
3 −

2F1F
2
3 + 2F2
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a132 = 2x21x
7
3 + 4x1x

2
2x

6
3 + 2x42x

5
3 + 4x1x2x

5
3 + 4x32x

4
3 − 4x1x

4
3 − 2x22x

3
3 − 2x2x

2
3 − 2x3 =

−2F1F
4
3 − 2F2F

2
3 − 2F3

a133 = 0

k=2:
a211 = a121
a212 = a122
a213 = a123 = 0

a221 = 16x31x
8
3 + 48x21x

2
2x

7
3 + 48x1x

4
2x

6
3 + 16x62x

5
3 + 48x21x2x

6
3 + 96x1x

3
2x

5
3 + 48x52x

4
3 −

24x21x
5
3+24x42x

3
3−48x1x2x

3
3−32x32x

2
3+12x1x

2
3−12x22x3+12x2 = 16F 3

2F
2
3 −24F 2

2F3+
12F2

a222 = −a211 − a233 = −8x21x
7
3 − 16x1x

2
2x

6
3 − 8x42x

5
3 − 16x1x2x

5
3 − 16x32x

4
3 + 8x1x

4
3 +

8x2x
2
3 − 2x3 = −8F 2

2F
3
3 + 8F2F

2
3 − 2F3

a223 = 0

a231 = −8x41x
9
3 − 32x31x

2
2x

8
3 − 48x21x

4
2x

7
3 − 32x1x

6
2x

6
3 − 8x82x

5
3 − 32x31x2x

7
3 − 96x21x

3
2x

6
3 −

96x1x
5
2x

5
3−32x72x

4
3+24x31x

6
3+24x21x

2
2x

5
3−24x1x

4
2x

4
3−24x62x

3
3+64x21x2x

4
3+96x1x

3
2x

3
3+

32x52x
2
3−10x21x

3
3+36x1x

2
2x

2
3+38x42x3−12x1x2x3+4x32+2x1 = 8F1F

2
2F

2
3 −8F1F2F3+

8F 3
2 + 2F1

a232 = 4x31x
8
3+12x21x

2
2x

7
3+12x1x

4
2x

6
3+4x62x

5
3+12x21x2x

6
3+24x1x

3
2x

5
3+12x52x

4
3−10x21x

5
3−

8x1x
2
2x

4
3+2x42x

3
3−16x1x2x

3
3−12x32x

2
3−6x22x3−2x2 = −4F1F2F

3
3 +2F1F

2
3−4F 2

2F3−2F2

a233 = 0

k=3:
a311 = a131
a312 = a132
a313 = a133 = 0
a321 = a231
a322 = a232
a323 = a233 = 0

a331 = 4x51x
10
3 + 20x41x

2
2x

9
3 + 40x31x

4
2x

8
3 + 40x21x

6
2x

7
3 + 20x1x

8
2x

6
3 + 4x102 x

5
3 + 20x41x2x

8
3 +

80x31x
3
2x

7
3 + 120x21x

5
2x

6
3 + 80x1x

7
2x

5
3 + 20x92x

4
3 − 18x41x

7
3 − 32x31x

2
2x

6
3 + 12x21x

4
2x

5
3 +

48x1x
6
2x

4
3+22x82x

3
3−64x31x2x

5
3−152x21x

3
2x

4
3−112x1x

5
2x

3
3−24x72x

2
3+16x31x

4
3−36x21x

2
2x

3
3−

100x1x
4
2x

2
3 − 48x62x3 + 28x21x2x

2
3 + 8x1x

3
2x3 − 16x52 − 2x21x3 + 8x1x

2
2 = 4F 2

1F2F
2
3 −

2F 2
1F3 + 8F1F

2
2

a332 = −2x41x
9
3 − 8x31x

2
2x

8
3 − 12x21x

4
2x

7
3 − 8x1x

6
2x

6
3 − 2x82x

5
3 − 8x31x2x

7
3 − 24x21x

3
2x

6
3 −

24x1x
5
2x

5
3 − 8x72x

4
3 + 8x31x

6
3 + 12x21x

2
2x

5
3 − 4x62x

3
3 + 20x21x2x

4
3 + 32x1x

3
2x

3
3 + 12x52x

2
3 −

4x21x
3
3 + 8x1x

2
2x

2
3 + 10x42x3 + 4x32 − 2x1 = −2F 2

1F
3
3 − 4F1F2F3 − 2F1
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a333 = −a311 − a322 = 0

Example 2. Recently Dan Yan ([10]) has proved that the Jacobian Conjecture is
true for the Drużkowski mappings in dimension n ≤ 9, however only in the case when
the matrix A (cf.(1)) has no zeros on its diagonal, and for general n and rankA ≤
4. Moreover Michiel de Bondt in his thesis [2] proved the validity of the Jacobian
Conjecture for all Drużkowski mappings in dimension n ≤ 8. Let us consider the
following Drużkowski mapping in dimension 13.

F1 = X1 +
(
1
6X4 + 1

6X5 − 1
3X6 − 1

6X7 − 1
6X8 + 1

3X9 +X13

)3

F2 = X2 +
(
1
6X4 + 1

6X5 − 1
3X6 − 1

6X7 − 1
6X8 + 1

3X9 −X13

)3

F3 = X3 +
(
1
6X4 + 1

6X5 − 1
3X6 − 1

6X7 − 1
6X8 + 1

3X9

)3

F4 = X4 +
(
1
6X1 + 1

6X2 − 1
3X3 +X12

)3

F5 = X5 +
(
1
6X1 + 1

6X2 − 1
3X3 −X12

)3

F6 = X6 +
(
1
6X1 + 1

6X2 − 1
3X3

)3

F7 = X7 +
(
− 1

3X3 + 1
6X10 + 1

6X11 +X13

)3

F8 = X8 +
(
− 1

3X3 + 1
6X10 + 1

6X11 −X13

)3

F9 = X9 +
(
− 1

3X3 + 1
6X10 + 1

6X11

)3

F10 = X10 +
(
1
6X4 + 1

6X5 − 1
3X6 − 1

6X7 − 1
6X8 + 1

3X9 +X12

)3

F11 = X11 +
(
1
6X4 + 1

6X5 − 1
3X6 − 1

6X7 − 1
6X8 + 1

3X9 −X12

)3
F12 = X12

F13 = X13

In the above example rank(A) = 5. The computation of wronskians is involved,
therefore we have presented it separately in our website http : //crypto.ii.uj.edu.pl/galois/.

Remark 2. In his landmark paper [3] L.A. Campbell studied in fact general covering
maps. Let us observe that our computational approach can be used as well for detect-
ing Galois coverings. In this case we can not assume that the Jacobian determinant
is a non-zero constant, however the computations are analogous.
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