PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dye removal using keggin polyoxometalates assisted ultrafi ltration: characterization and UV visible study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To improve dye retention, there is a concurrent interest in the development and optimization of an alternative and promising method for the dye recovery in aqueous solutions. In this regard, considerable attention was paid to the polyoxometalates (POMs) assisted ultrafiltration (POMAUF). The aim of the present study is to eliminate toluidine blue (TB) dye by ultrafiltration membrane using keggin polyoxometalates (POMs) as complexing agents. In the first step, the keggin polyoxometalates K3[PW12O40]∙6H2O (PW12) and K7 [PW11O39]∙14H2O (PW11) were prepared. Then, the obtained powders were characterized by X-ray diffraction and infrared spectroscopies. Afterwards, the removal of toluidine blue (TB) using polyoxometalates assisted ultrafiltration (POMAUF) was studied. Factors affecting the retention of dye and permeate flux such as transmembrane pressure, operating time, polyoxometalates concentration, ionic strength, surfactant and pH were investigated. All results of both compounds have been presented and discussed. The results reveal that the addition of POMs leads to an increase in dye retention from 11 to 95% for the PW12 and to 98% for the PW11. The results of this work have thus suggested the promising enhancement of ultrafiltration membrane selectivity for the dye removal using new complexing agents such as POMs in place of polyelectrolytes and surfactants.
Rocznik
Strony
30--39
Opis fizyczny
Bibliogr. 42 poz., wykr.
Twórcy
  • Laboratory of Water, Membrane and Environmental Biotechnology (LEMBE), CERTE BP 273, 8020 Soliman, Tunisia
  • Faculty of Sciences of Tunis, University Tunis – El Manar 20 Tolede Street, Tunis 2092, Tunisia
  • Laboratory of Water, Membrane and Environmental Biotechnology (LEMBE), CERTE BP 273, 8020 Soliman, Tunisia
autor
  • Laboratory of Water, Membrane and Environmental Biotechnology (LEMBE), CERTE BP 273, 8020 Soliman, Tunisia
Bibliografia
  • 1. Ahmad, A.L. & Puasa, S.W. (2007). Reactive dyes decolourization from an aqueous solution by combined coagulation/micellarenhanced ultrafiltration process, Chemical Engineering Journal, 132, pp. 257-265, DOI: 10.1016/j.cej.2007.01.005.
  • 2. Akbari, A., Desclaux, S., Remigy, J.C. & Aptel, P. (2002). Treatment of textile dye effluents using a new photografted nanofiltration membrane, Desalination, 149, pp. 101-107, DOI: 10.1016/S0011-9164(02)00739-7.
  • 3. Akutagawa, T., Kudo, F. & Tsunashima, R. (2011). Hydrogen-bonded assemblies of two-electron reduced mixed-valence [XMo12O40] (X=P and Si) with p-phenylenediamines, Inorganic Chemistry, 50, pp. 6711-6718, DOI: 10.1021/ic200683e.
  • 4. Aroua, M.K. & Zuki, F.M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration, Journal of Hazardous Materials, 147, pp. 752-758, DOI: 10.1016/j.jhazmat.2007.01.120.
  • 5. Baek, K., Kim, B.K., Cho, H.J. & Yang, J.W. (2003). Removal characteristics of anionic metals by micellar-enhanced ultrafiltration, Journal of Hazardous Materials, 99, pp. 303-311, DOI: 10.1016/S0304-3894(03)00063-3.
  • 6. Bazin, I., Ibn Hadj Hassine, A., Haj Hamouda, Y., Mnif, W., Bartegi, A., Ferber, M.L., De Waard, M. & Gonzalez, C. (2012). Estrogenic and anti-estrogenic activity of 23 commercial textile dyes, Ecotoxicology and Environmental Safety, 85, pp. 131-136, DOI: 10.1016/j.ecoenv.2012.08.003.
  • 7. Bi, B., Xu, L., Xu, B. & Liu, X. (2011). Heteropoly blue-intercalated layered double hydroxides for cationic dye removal from aqueous media, Applied Clay Science, 54, pp. 242-247, DOI: 10.1016/j.clay.2011.09.003.
  • 8. Buckley, C.A. (1992). Membrane technology for the treatment of dye house effluents, Water Science Technology, 25, 10, pp. 203-209.
  • 9. Chen, J., Dong, W., Möhwald, H. & Krastev, R. (2008). Amplified fluorescence quenching of self-assembled polyelectrolyte-dye nanoparticles in aqueous solution, Chemistry of Materials, 20, pp. 1664-1666, DOI: 10.1021/cm071678h.
  • 10. Contant, R. (1987). Relationships between apparent tungsto phosphates with the anion PW12O40 3-. Synthesis and proprieties of a new lacunary polyoxotungstophosphate K10P2W20O70∙24H2O, Canadian Journal of Chemistry, 65, pp. 568-573. (in French)
  • 11. Dasgupta, J., Singh, M., Skider, J., Padarthi, V., Chakraborty, S. & Curcio, S. (2015). Ecotoxicology and environmental safety response surface-optimized removal of Reactive Red 120 dye from its aqueous solutions using polyethyleneimine enhanced ultrafiltration, Ecotoxicology and Environmental Safety, pp. 1-8, DOI: 10.1016/j.ecoenv.2014.12.041.
  • 12. Errington, R.J., Coyle, L., Middleton, P.S., Murphy, C.J., Clegg, W. & Harrington, R.W. (2010). Synthesis and structure of the alkoxidotitanium pentamolybdate (nBu4N)3[(iPrO)TiMo5O18]: An entry into systematic TiMo5 reactivity, Journal of Cluster Science, 21, pp. 503-514, DOI: 10.1007/s10876-010-0329-3.
  • 13. Forgacs, E., Cserháti, T. & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review, Environment International, 30, pp. 953-971, DOI: 10.1016/j.envint.2004.02.001.
  • 14. Fradj, A.B., Hamouda, S.B., Ouni, H., Lafi, R., Gzara, L. & Hafiane, A. (2014). Removal of methylene blue from aqueous solutions by poly(acrylic acid) and poly(ammonium acrylate) assisted ultrafiltration, Separation and Purification Technology, 133, pp. 76-81, DOI: 10.1016/j.seppur.2014.06.038.
  • 15. Haktanır, C., Özbelge, H.Ö., Bıçak, N. & Yılmaz, L. (2017). Removal of hexavalent chromium anions via polymer enhanced ultrafiltration using a fully ionized polyelectrolyte, Separation Science and Technology (Philadelphia), 52, pp. 2487-2497, DOI: 10.1080/01496395.2017.1343351.
  • 16. Hammami, M., Ennigrou, D.J., Naifer, K.H. & Ferid, M. (2016). Recovery of samarium (III) from aqueous solutions by poly(sodium 4-styrenesulfonate) assisted-ultrafiltration, Environmental Progress & Sustainable Energy, 35, 4, pp. 1-7, DOI: 10.1002/ep12335.
  • 17. Han, X., Zhang, Z., Zhang, T., Li, Y.G., Lin, W., You, W., Su, Z.M. & Wang, E.B. (2014). Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation, Journal of the American Chemical Society, 136, 14, pp. 5359-5366, DOI: 10.1021/ja412886e.
  • 18. Hu, Y., Luo, F. & Dong, F. (2011). Design synthesis and photocatalytic activity of a novel lilac-like silver-vanadate hybrid solid based on dicyclic rings of [V4O12]4- with {Ag7}7+ cluster, Chemical Communications, 47, pp. 761-763, DOI: 10.1039/C0CC02965C.
  • 19. Huang, J.H., Zhou, C.F., Zeng, G.M., Li, X., Niu, J., Huang, H.J., Shi, L.J. & He, S.B. (2010). Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane, Journal of Membrane Science, 365, pp. 138-144, DOI: 10.1016/j.memsci.2010.08.052.
  • 20. Juang, R.S., Xu, Y.Y. & Chen, C.L. (2003). Separation and removal of metal ions from dilute solutions using micellar-enhanced ultrafiltration, Journal of Membrane Science, 218, pp. 257-267, DOI: 10.1016/S0376-7388(03)00183-2.
  • 21. Mahadevaiah, N., Venkataramani, B. & Prakash, B.S.J. (2007). Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite - a breakthrough curve study, Chemistry of Materials, 19, pp. 4606-4612, DOI: 10.1021/cm071028d.
  • 22. Miras, H.N., Yan, J., Long, D.L. & Cronin, L. (2012). Engineering polyoxometalates with emergent properties, Chemical Society Reviews, 41, p. 7403, DOI: 10.1039/c2cs35190k.
  • 23. Mukherjee, P., Jones, K.L. & Abitoye, J.O. (2005). Surface modification of nanofiltration membranes by ion implantation, Journal of Membrane Science, 254, pp. 303-310, DOI: 10.1016/j.memsci.2005.01.004.
  • 24. Niu, J., Zhang, S., Chen, H., Zhao, J., Ma, P. & Wang, J. (2011). 1-D, 2-D, and 3-D organic-inorganic hybrids assembled from keggin-type polyoxometalates and 3d-4f heterometals, Crystal Growth & Design, 11, pp. 3769-3777, DOI: 10.1021/cg2001249.
  • 25. Omwoma, S., Gore, C.T., Ji, Y., Hu, C. & Song, Y.F. (2014). Environmentally benign polyoxometalate materials, Coordination Chemistry Reviews, 286, pp. 17-29, DOI: 10.1016/j.ccr.2014.11.013.
  • 26. Ouni, H. & Dhahbi, M. (2010a). Spectrometric study of crystal violet in presence of polyacrylic acid and polyethylenimine and its removal by polyelectrolyte enhanced ultrafiltration, Separation and Purification Technology, 72, pp. 340-346, DOI: 10.1016/j.seppur.2010.03.003.
  • 27. Ouni, H. & Dhahbi, M. (2010b). Removal of dyes from wastewater using polyelectrolyte enhanced ultrafiltration (PEUF), Desalination and Water Treatment, 22, pp. 355-362, DOI: 10.5004/dwt.2010.1234.
  • 28. Porter, J.J. (1998). Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes, Journal of Membrane Science, 151, pp. 45-53, DOI: 10.1016/S0376-7388(98)00236-1.
  • 29. Purkait, M.K., DasGupta, S. & De, S. (2004). Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant, Separation and Purifi cation Technology, 37, pp. 81-92, DOI: 10.1016/j.seppur.2003.08.005.
  • 30. Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R. & Thouvenot, R. (1983). Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the keggin structure, Inorganic Chemistry, 22, pp. 207-216, DOI: 10.1021/ic00144a006.
  • 31. Santos, F.M., Brandão, P., Félix, V., Nogueira, H.I.S. & Cavaleiro, A.M.V. (2015). Synthesis and properties of new materials with cobalt(II), iron(III) and manganese(III)-substituted kegging polyoxotungstates and 1-alkyl-3-methylimidazolium cations, Polyhedron, 101, pp. 109-117, DOI: 10.1016/j.poly.2015.07.032.
  • 32. Tan, X., Kyaw, N.N., Teo, W.K. & Li, K. (2006). Decolorization of dye-containing aqueous solutions by the polyelectrolyte-enhanced ultrafiltration (PEUF) process using a hollow fiber membrane module, Separation and Purification Technology, 52, pp. 110-116, DOI: 10.1016/j.seppur.2006.03.028.
  • 33. Van der Bruggen, B., Cornelis, G., Vandecasteele, C. & Devreese, I. (2005). Fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry, Desalination, 175, pp. 111-119, DOI: 10.1016/j.desal.2004.09.025.
  • 34. Van der Bruggen, B., Daems, B., Wilms, D. & Vandecasteele, C. (2001). Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry, Separation and Purification Technology, 22, pp. 519-528, DOI: 10.1016/S1383-5866(00)00134-9.
  • 35. Verbych, S., Bryk, M. & Zaichenko, M. (2006). Water treatment by enhanced ultrafiltration, Desalination, 198, pp. 295-302, DOI: 10.1016/j.desal.2005.12.029.
  • 36. Yao, L., Zhang, L., Wang, R., Chou, S. & Dong, Z. (2016). A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes, Journal of Hazardous Materials, 301, pp. 462-470, DOI: 10.1016/j.jhazmat.2015.09.027.
  • 37. Yin, P., Li, D. & Liu, T. (2012). Solution behaviors and self-assembly of polyoxometalates as models of macroions and amphiphilic polyoxometalate-organic hybrids as novel surfactants, Chemical Society Reviews, 41, p. 7368, DOI: 10.1039/c2cs35176e.
  • 38. You, Y., Gao, S., Xu, B., Li, G. & Cao, R. (2010). Self-assembly of polyoxometalate-azure a multilayer films and their photocatalytic properties for degradation of methyl orange under visible light irradiation, Journal of Colloid and Interface Science, 350, pp. 562-567, DOI: 10.1016/j.jcis.2010.07.001.
  • 39. Zaghbani, N., Hafiane, A. & Dhahbi, M. (2007). Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration, Separation and Purification Technology, 55, pp. 117-124, DOI: 10.1016/j.seppur.2006.11.008.
  • 40. Zhang, G., Keita, B., Craescu, C.T., Miron, S., Oliveira, P.D. & Nadjo, L. (2007). Polyoxometalate binding to human serum albumin: a thermodynamic and spectroscopic approach, Journal of Physical Chemistry B, 111, pp. 11253-11259, DOI: 10.1021/JP072947U.
  • 41. Zhang, T., Brown, J., Oakley, R.J. & Faul, C.F.J. (2009). Towards functional nanostructures: ionic self-assembly of polyoxometalates and surfactants, Current Opinion in Colloid and Interface Science, 14, pp. 62-70, DOI: 10.1016/j.cocis.2007.10.003.
  • 42. Zhou, Y., Zheng, L., Han, F., Zhang, G., Ma, Y., Yao, J., Keita, B., Oliveira, P.D. & Nadjo, L. (2011). Inhibition of amyloid-β protein fibrillization upon interaction with polyoxometalates nanoclusters, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 375, pp. 97-101, DOI: 10.1016/j.colsurfa.2010.11.068.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-31506401-cd23-4320-8d1a-2bc9af981125
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.