PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Air Monitoring System in Megacity on the Example of St. Petersburg

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper considers the current problem of improving the quality of atmospheric monitoring. The paper aimed at conducting a monitoring section of the existing situation in the studied territories in St. Petersburg. The following study methods were described: gravimetric, electrochemical, and chromatographic. The analysis of samples was carried out on the following laboratory facilities of the mobile environmental laboratory: PU-3E aspirator, ECOLAB portable gas analyser, DUSTTRAK 8533 dust analyser, portable gas chromatograph FGKh-1, professional weather station. The study consisted of two parts and was carried out in two districts of the city: Novosmolenskaya Embankment of the Smolenka River (Vasileostrovsky District) and the banks of the Volkovka River (Frunzensky District). As a result of the study, the concentrations of nitrogen dioxide, carbon oxide, suspended solids and volatile organic compounds in the air of the studied districts were measured. The obtained values were compared with the maximal single limiting concentration (LMCm.s.) and assumptions were made about the possible sources of pollution. In the territory of Novosmolenskaya Embankment, the concentration of nitrogen dioxide varied from 0.211 mg/m3 to 0.472 mg/m3, which means the exceedance of LMCm.s. The maximum permissible concentration of the volatile organic compounds (VOC) content in air was exceeded by several orders of magnitude. No exceedance of LMCm.s. was detected for the content of carbon oxide and suspended solids in the air. The empirical data was used to build the air pollution content maps and to calculate the atmospheric pollution index in the studied territory.
Rocznik
Strony
175--185
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Saint-Petersburg Mining University, 21st line, h. 2, 199106, Saint-Petersburg, Russian Federation
  • Saint-Petersburg Mining University, 21st line, h. 2, 199106, Saint-Petersburg, Russian Federation
Bibliografia
  • 1. Aspirator PU-ZE. Instruments and equipment for ecology, medicine, gas stations and oil depots URL: https://www.ximko.ru/catalog/aspirators/PU-3T/
  • 2. Bespalov V.I., Gurova O.S., Samarskaya N.S. 2016. Main Principles of the Atmospheric Air Ecological Monitoring Organization for Urban Environment Mobile Pollution Sources. Procedia Engineering, 150, 2019–2024. DOI: 10.1016/j.proeng.2016.07.286
  • 3. Blinov L.N., Perfilova I.L., Yumasheva L.V., Sokolova T.V. 2013. Ecological problems of megacities. Health is the basis of human potential: problems and solutions, 2(8), 837–845.
  • 4. Chen D., Liu X., Lang J., Zhou Y., Wei L., Wang X., Guo X. 2017. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain. Science of the Total Environment, 583, 280–291. DOI: 10.1016/j.scitotenv.2017.01.066
  • 5. Danilov A.S., Smirnov Y.D., Pashkevich M.A. 2015. Use of biological adhesive for effective dust suppression in mining operations. Journal of Ecological Engineering, 16(5), 9–14. DOI: 10.12911/22998993/60448
  • 6. Dmitrieva T.V. 2019. Weather forecasts in aviation and the use of modern methods of transmission of weather forecasts in airports and airfields. METAR, Internet and other types of weather forecast transmission methods. Vector of Geosciences, 2(1), P. 47–53. DOI: 10.24411/2619–0761–2019–10007
  • 7. Elansky N.F., Shilkin A.V., Ponomarev N.A., Semutnikova E.G., Zakharova P.V. 2020. Weekly patterns and weekend effects of air pollution in the Moscow megacity. Atmospheric Environment, 224, 117303. DOI: 10.1016/j.atmosenv.2020.117303
  • 8. Fann N., Fulcher C.M., Baker K. 2013. The recent and future health burden of air pollution apportioned across U.S. sectors. Environmental Science & Technology, 47(8), 3580–3589. DOI: 10.1021/es304831q
  • 9. Gas analyzer EKOLAB. EKOBIOCHIM URL: http://ekolab.su/index.php/katalog-priborov/gazoanalizatory/gazoanalizator-ekolab-detail#tekhnicheskiekharakteristiki
  • 10. Goman I.V. 2019a. Development of the dialogue skills in a foreign language in comparing of oil benchmarks. Journal of Physics: Conference Series, 1384(1). DOI:10.1088/1742–6596/1384/1/012013
  • 11. Goman I.V., Varlakova E.A. 2019b. Teaching communication skills in a foreign language to students of oil and gas specialisation. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 19(5.4), 295–300. DOI:10.5593/sgem2019/5.4/S22.040
  • 12. Guo H., Kota S.H., Sahu S.K, Zhang H. 2019. Contributions of local and regional sources to PM2.5 and its health effects in north India. Atmospheric Environment, 214, 116867. DOI: 10.1016/j.atmosenv.2019.116867
  • 13. Ignatyev A.V. 2020. Methodology for comprehensive assessment of atmospheric air state in populated areas. Materials Science and Engineering, 962(4). DOI:10.1088/1757–899X/962/4/042048
  • 14. Ivanov A.V., Platov A.Y., Stepanov D.V., Ostanina I.M. 2018b. Online monitoring of urban environment. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 18(2.2), 339–346. DOI: 10.5593/sgem2018/2.2/S08.043
  • 15. Ivanov A.V., Strizhenok A.V. 2018a. Monitoring and reducing the negative impact of halite dumps on the environment. Pollution Research, 37(1), 51–55.
  • 16. Jiang Y., Xing J., Wang S., Chang X., Liu S., Shi A., Sahu S.K. 2021. Understand the local and regional contributions on air pollution from the view of human health impacts. Frontiers of Environmental Science and Engineering, 15(5). DOI:10.1007/s11783–020–1382–2
  • 17. Kokoulina A., May I. 2018. Health risk assessment in development the air quality monitoring programs for the areas affected by production, preparation and primary oil refining. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 18(4.2), 467–474. DOI: 10.5593/sgem2018/4.2/S19.061
  • 18. Kuzhaeva A.A., Dzhevaga N.V., Berlinskii I.V. 2019. The processes of hydrocarbon conversion using catalytic systems. Journal of Physics: Conference Series, 1399(2). DOI:10.1088/1742–6596/1399/2/022057
  • 19. Li C.Z., Zhao Y., Xu X. 2019. Investigation of dust exposure and control practices in the construction industry: Implications for cleaner production. Journal of Cleaner Production, 227, 810–824. DOI: 10.1016/j.jclepro.2019.04.174
  • 20. Lobacheva O.L., Dzhevaga N.V., Danilov A.S. 2016. The method of removal yttrium (III) and ytterbium (III) from dilute aqueous solutions. Journal of Ecological Engineering, 17(2), 38–42. DOI:10.12911/22998993/62284
  • 21. Manzhilevskaya S., Petrenko L., Azarov V. 2021. Monitoring methods for fine dust pollution during construction operations. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies. Advances in Intelligent Systems and Computing, 1259. DOI:10.1007/978–3–030–57453–6_29
  • 22. Monforte P., Ragusa M.A. 2018. Evaluation of the air pollution in a Mediterranean region by the air quality index. Environmental Monitoring and Assessment, 190(11), 625. DOI: 10.1007/s10661–018–7006–7
  • 23. Ottosen T.B, Ketzel M., Skov H., Hertel O., Brandt J., Kakosimos K.E. 2016. A parameter estimation and identifiability analysis methodology applied to a street canyon air pollution model. Environmental Modelling & Software, 84 165–176, DOI: 10.1016/j.envsoft.2016.06.022
  • 24. Padoan S., Zappi A., Adam T., Melucci D., Gambaro A., Formenton G., Popovicheva O., Nguyen D.L., Schnelle-Kreis J., Zimmermann R. 2020. Organic molecular markers and source contributions in a polluted municipality of north-east Italy: Extended PCA-PMF statistical approach. Environmental Research, 186, 109587. DOI: 10.1016/j.envres.2020.109587
  • 25. Pashkevich M.A., Petrova T.A. 2017. Assessment of Widespread air Pollution in the Megacity Using Geographic Information Systems. Zapiski Gornogo instituta, 228, 738–742. DOI:10.25515/PMI.2017.6.738
  • 26. Principles of operation of sensors in a gas analyzer. REIKEN KEIKI URL: http://rikenkeiki.ru/for-clients/useful/printsip-raboty-datchikov-v-gazoanalizatore/
  • 27. Sergina N.M., Solomakhina L.Ya., Lazurenko K.I., Solomakhin M.S. 2019. On air pollution in St. Petersburg with suspended substances. Engineering Bulletin of the Don, 1(52). 157.
  • 28. Shvartsburg L.E., Butrimova E.V., Yagolnitser O.V. 2017. Energy Efficiency and Ecological Safety of Shaping Technological Processes. Procedia Engineering, 206, 1009–1014. DOI: 10.1016/j.proeng.2017.10.586
  • 29. Sidorenko V.F., Ignatyev A.V., Abroskin А.A. 2020. Application of results of atmospheric air monitoring for safe location of construction sites. Innovacii i Investicii, 3, 273–276.
  • 30. Solomakhina L.Ya., Lazurenko K.I., Solomakhin M.S. 2018. Climatic features of St. Petersburg in assessing the content of suspended solids in atmospheric air. Engineering Bulletin of the Don, 4(51). 257.
  • 31. Strizhenok A.V., Ivanov A.V. 2016. An advanced technology for stabilizing dust producing surfaces of built-up technogenic massifs during their operation. Power Technology and Engineering, 50(3), 240–243. DOI:10.1007/s10749–016–0690-y
  • 32. Telichenko V.I., Slesarev M.U., Kuzovkina T.V. 2016. The Analysis of Methodology of the Assessment and Expected Indicators of Ecological Safety of Atmospheric air in the Russian Federation for 2010–2020. Years Procedia Engineering, 153, 736–740. DOI: 10.1016/j.proeng.2016.08.235
  • 33. Tikhonova I.V., Zemlyanova M.A. 2019. Socialhygienic monitoring system updating based on health risk analysis (at the municipal level). Health Risk Analysis, 4, 60–69. DOI: 10.21668/HEALTH.RISK/2019.4.06.ENG
  • 34. Volkodaeva M.V., Kiselev A.V. 2017. On development of System for Environmental Monitoring of Atmospheric Air Quality. Zapiski Gornogo instituta. 227, 589–596. DOI: 10.25515/PMI.2017.5.589
  • 35. Yakubailik O.E., Kadochnikov A.A., Tokarev A.V. 2018. WEB Geographic Information System and the Hardware and Software Ensuring Rapid Assessment of Air Pollution. Optoelectronics, Instrumentation and Data Processing, 54(3), 243–249. DOI: 10.3103/S8756699018030056
  • 36. Zuo J., Rameezdeen R., Hagger M., Zhou Z., Ding Z. 2017. Dust pollution control on construction sites: Awareness and self-responsibility of managers. Journal of Cleaner Production, 166, 312–320. DOI: 10.1016/j.jclepro.2017.08.027
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-314f4dd9-70c5-445c-bcb4-dad90248c0ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.