PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Verification of punching shear outside the shear cap by the direct method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bezpośrednia metoda weryfikacji przebicia poza głowicą słupa
Języki publikacji
EN
Abstrakty
EN
The proposition of a method to verify the punching resistance for very large supports based on the EN 1992-1-1 standard is described in this paper. The present standard guidelines for the calculation of the punching resistance for large supports are also summarised. The proposed direct method is compared with other standard methods using an example taken from design practice. This method consists of a direct check of the shear forces at specific locations of the control perimeter with the permissible shear force calculated from the EC2 standard. The method showed very good agreement with the experiment while remaining practical for applications. The method presented takes into account the actual distribution of shear forces in the vicinity of the support, taking into account the influence of non-uniform loads, irregular floor geometry, the concentration of internal forces at the corners of the support and the influence of the stiffness of the head used. The paper provides scientists, engineers, and designers new method (called the direct method) for estimation of the punching load-bearing capacity outside the shear cap.
PL
W artykule omówiono propozycję metody weryfikacji nośność na przebicie dużych podpór w oparciu o normę EN 1992-1-1. Przedstawiona metoda uwzględnia rzeczywisty rozkład sił ścinających w sąsiedztwie podpory z uwzględnieniem wpływu obciążeń niejednorodnych, nieregularnej geometrii stropu, koncentracji sił wewnętrznych w narożach podpory oraz wpływu zastosowana sztywność głowy. Jest to kolejna zaleta proponowanej metody w porównaniu z normowymi metodami obliczania nośności na przebicie poza głowicami w połączeniu płyta-słup. Podsumowano wybrane aktualne normowe wytyczne dotyczące obliczania nośność na przebicie dla bardzo dużych podpór. Zaproponowaną metodę porównano z wybranymi normowymi metodami na przykładzie zaczerpniętym z praktyki projektowej. Autorzy niniejszej pracy mają nadzieję, że proponowana metoda będzie pomocna projektantom konstrukcji w ocenie rzeczywistej wytrzymałości na przebicie połączeń płyta-słup zwieńczonych głowicą. Metoda wykazała bardzo dobrą zgodność z przeprowadzonymi eksperymentami. Niemniej jednak wydaje się konieczne przeprowadzenie większej liczby badań laboratoryjnych w celu wykazania uniwersalności proponowanego podejścia. Opisana metoda bezpośrednia winna wzbudzić w środowisku inżynierów budownictwa i naukowców żywe zainteresowanie, które będzie polem do dyskusji i podjęcia tematu wyznaczania nośności na przebicie.
Rocznik
Strony
359--375
Opis fizyczny
Bibliogr. 53 poz., il., tab.
Twórcy
  • Maciej Grabski Engineering, Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
Bibliografia
  • [1] M. Moussard, P. Garibaldi, M. Curbach, “The invention of Reinforced concrete (1848-1906)”, in High Tech Concrete: Where Technology and Engineering Meet - Proceedings of the 2017 fib Symposium, 2017. Maastricht, The Netherlands: Springer, 2017, pp. 2785-2794; DOI: 10.1007/978-3-319-59471-2_316.
  • [2] A. Kierdorf, “Early Mushroom Slab Construction in Switzerland, Russia and the U.S.A. - A Study in Parallel Technological Development”, in Proceedings of the Second International Congress on Construction History. Cambridge, 2006, pp. 1793-1807. [Online]. Available: https://www.arct.cam.ac.uk/system/files/documents/ vol-2-1793-1808-kierdorf.pdf.
  • [3] A.S. Saadoon, A.M. Abbas, H.K. Hussain, “A Review on Flat Slab Punching Shear Reinforcement”, Journal of University of Babylon for Engineering Sciences, 2019, vol. 27, no. 3, pp. 44-58.
  • [4] L. Slivnik, “The Distinction between Mushroom and Umbrella Structures in Slovene Architecture”, IOP Conference Series: Materials Science and Engineering, 2019, vol. 471, no. 8, art. ID 082058; DOI: 10.1088/1757-899X/471/8/082058.
  • [5] M. Gołdyn, T. Urban, “Hidden capital as an alternative method for increasing punching shear resistance of LWCA flat slabs”, Archives of Civil Engineering, 2019, vol. 65, no. 4, pp. 309-328; DOI: 10.2478/ace-2019-0062.
  • [6] A. Ambroziak, M. Grabski, “Analiza porównawcza metod obliczania przebicia”, Materiały Budowlane, 2019, vol. 563, no. 7, pp. 52-55; https://www.materialybudowlane.info.pl/pl/zintegrowane-projektowanie-410/418-wydanie/mb-07-2019/12183-analiza-porownawcza-metod-obliczania-przebicia.html.
  • [7] A. Ambroziak, M. Grabski, “Sposoby przykładania obciążenia zmiennego na konstrukcję płytowo-słupową”, Materiały Budowlane, 2019, vol. 557, no. 1, pp. 80-82; DOI: 10.15199/33.2019.01.15.
  • [8] M. Grabski, A. Ambroziak, “Shear cap size selection method based on parametric analysis of ACI-318 code and Eurocode 2 standard”, Materials (Basel), 2020, vol. 13, no. 21, pp. 1-24; DOI: 10.3390/ma13214938.
  • [9] M. Gołdyn, Ł. Krawczyk, W. Ryżyński, T. Urban, “Experimental investigations on punching shear of flat slabs made from lightweight aggregate concrete”, Archives of Civil Engineering, 2018, vol. 64, no. 4/I, pp. 293-306; DOI: 10.2478/ace-2018-0058.
  • [10] T. Urban, M. Gołdyn, Ł. Krawczyk, “Strengthening of RC slabs against punching shear in theory and practice”, Archives of Civil Engineering, 2021, vol. 67, no. 4, pp. 317-335; DOI: 10.24425/ace.2021.138502.
  • [11] J. Halvoník, A. Vidaković, V. Borzovič, “Failure analysis of collapsed parking garage building due to punching”, Engineering Failure Analysis, 2021, vol. 129, art. ID 105712; DOI: 10.1016/j.engfailanal.2021.105712.
  • [12] S. King, N.J. Delatte, “Collapse of 2000 Commonwealth Avenue: Punching Shear Case Study”, Journal of Performance of Constructed Facilities, 2004, vol. 18, no. 1, pp. 54-61; DOI: 10.1061/(ASCE)0887-3828(2004)18:1(54).
  • [13] H. Marzouk, A. Hussein, “Experimental investigation on the behavior of high-strength concrete slabs”, Structural Journal, 1991, vol. 88, no. 6, pp. 701-713.
  • [14] M.M.G. Inácio, A.F.O. Almeida, D.M.V. Faria, et al., “Punching of high strength concrete flat slabs without shear reinforcement”, Engineering Structures, 2015, vol. 103, pp. 275-284; DOI: 10.1016/j.engstruct.2015.09.010.
  • [15] M.M.G. Inácio, M. Lapi, A. Pinho Ramos, “Punching of reinforced concrete flat slabs - Rational use of high strength concrete”, Engineering Structures, 2020, vol. 206, art. ID 110194; DOI: 10.1016/j.engstruct. 2020.110194.
  • [16] J. Sagaseta, L. Tassinari, M. Fernández Ruiz, A. Muttoni, “Punching of flat slabs supported on rectangular columns”, Engineering Structures, 2014, vol. 77, pp. 17-33; DOI: 10.1016/j.engstruct.2014.07.007.
  • [17] D.R.C. Oliveira, P.E. Regan, G.S.S.A. Melo, “Punching resistance of RC slabs with rectangular columns”, Magazine of Concrete Research, 2004, vol. 56, no. 3, pp. 123-138; DOI: 10.1680/macr.2004.56.3.123.
  • [18] N.M. Hawkins, H.B. Fallsen, R.C. Hinojosa, “Influence of column rectangularity on the behavior of flat plate structures”, ACI Journal & Proceedings, 1972, vol. 69, no. 1, pp. 127-146.
  • [19] S. Guandalini, O.L. Burdet, A. Muttoni, “Punching tests of slabs with low reinforcement ratios”, Structural Journal, 2009, vol. 106, no. 1, pp. 87-95.
  • [20] S. Lips, “Punching of flat slabs with large amounts of shear reinforcement”, Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland, 2012. [Online]. Available: https://infoscience.epfl.ch/record/180221/files/EPFL_TH5409.pdf.
  • [21] P. Schmidt, D. Kueres, J. Hegger, “Punching shear behavior of reinforced concrete flat slabs with a varying amount of shear reinforcemen”, Structural Concrete, 2020, vol. 21, no. 1, pp. 235-246; DOI: 10.1002/suco.201900017.
  • [22] B. Wieczorek, W. Starosolski, “Wpływ mimośrodu obciążenia na nośność połączenia płyta-słup po przebiciu”, Zeszyty Naukowe Politechniki Rzeszowskiej. Budownictwo i Inżynieria Środowiska, 2012, vol. 59, no. 3/II, pp. 133-140. [Online]. Available: https://oficyna.prz.edu.pl/fcp/NGBUKOQtTKlQhbx08SlkAWxhQAykrCDILDWdbE1VGWGFBWxslAxt1FSVcVnRKCkI8VQIDJCUODBYAKg8TXBEbIRBSBw/18/public/zeszyty_naukowe/wbiis/2012/budownictwo-pw-nowe/bud-59-03-2-pw2.pdf.
  • [23] P.M. Lewiński, P.P. Więch, “Finite element model and test results for punching shear failure of RC slabs”, Archives of Civil and Mechanical Engineering, 2020, vol. 20, no. 2, pp. 1-16; DOI: 10.1007/s43452-020-00037-x.
  • [24] B. Belletti, J.C. Walraven, F. Trapani, “Evaluation of compressive membrane action effects on punching shear resistance of reinforced concrete slabs”, Engineering Structures, 2015, vol. 95, pp. 25-39; DOI: 10.1016/j.engstruct.2015.03.043.
  • [25] J. Einpaul, M. Fernández Ruiz, A. Muttoni, “Influence of moment redistribution and compressive membrane action on punching strength of flat slabs”, Engineering Structures, 2015, vol. 86, pp. 43-57; DOI: 10.1016/j.engstruct.2014.12.032.
  • [26] S. Teng, H.K. Cheong, K.L. Kuang, J.Z. Geng, “Punching Shear Strength of Slabs with Openings and Supported on Rectangular Columns”, Structural Journal, 2004, vol. 101, no. 5, pp. 678-687.
  • [27] M. Gołdyn, T. Urban, “The effect of openings size and location on the punching shear carrying capacity of the support zones of flat slabs in the light of the existing experimental investigations”, Inżynieria i Budownictwo, 2019, vol. 75, no. 4, pp. 165-170.
  • [28] A.F.O. Almeida, M.M.G. Inácio, V.J.G. Lúcio, A.P. Ramos, “Punching behaviour of RC flat slabs under reversed horizontal cyclic loading”, Engineering Structures, 2016, vol. 117, pp. 204-219; DOI: 10.1016/j.engstruct.2016.03.007.
  • [29] I. Robertson, G. Johnson, “Cyclic lateral loading of nonductile slab-column connections”, Structural Journal, 2006, vol. 103, no. 3, pp. 356-364.
  • [30] T. Urban, M. Gołdyn, Ł. Krawczyk, Ł. Sowa, “Experimental investigations on punching shear of lightweight aggregate concrete flat slabs”, Engineering Structures, 2019, vol. 197, art. ID 109371; DOI: 10.1016/j.engstruct.2019.109371.
  • [31] T. Urban, M. Gołdyn, J. Krakowski, Ł. Krawczyk, “Experimental investigation on punching behavior of thick reinforced concrete slabs”, Archives of Civil Engineering, 2013, vol. 59, no. 2, pp. 157-174; DOI: 10.2478/ace-2013-0008.
  • [32] P. Schmidt, D. Kueres, J. Hegger, “Contribution of concrete and shear reinforcement to the punching shear resistance of flat slabs”, Engineering Structures, 2020, vol. 203, art. ID 109872; DOI: 10.1016/j.engstruct.2019.109872.
  • [33] M.H. Oliveira, M.J.M. Pereira Filho, D.R.C. Oliveira, et al., “Punching resistance of internal slab-column connections with double-headed shear studs”, Revista IBRACON de Estruturas e Materiais, 2013, vol. 6, no. 5, pp. 681-714; DOI: 10.1590/S1983-41952013000500002.
  • [34] D.V. Bompa, A.Y. Elghazouli, “Structural performance of RC flat slabs connected to steel columns with shear heads”, Engineering Structures, 2016, vol. 117, pp. 161-183; DOI: 10.1016/j.engstruct.2016.03.022.
  • [35] B. Wieczorek, Wewnętrzna strefa podporowa żelbetowego ustroju płytowo-słupowego w stanie awaryjnym wywołanym przebiciem płyty. Gliwice, Poland: Wydawnictwo Politechniki Śląskiej, 2019.
  • [36] M. Diao, Y. Li, H. Guan, et al., “Post-punching mechanisms of slab-column joints under upward and downward punching actions”, Magazine of Concrete Research, 2021, vol. 73, no. 6, pp. 302-314; DOI: 10.1680/jmacr.19.00217.
  • [37] A. Pinho Ramos, V.J.G. Lúcio, “Post-punching behaviour of prestressed concrete flat slabs”, Magazine of Concrete Research, 2008, vol. 60, no. 4, pp. 245-251; DOI: 10.1680/macr.2008.60.4.245.
  • [38] B. Wieczorek, “Influence of the location of the column on the load capacity of a slab-column connection for the inner column after punching”, Procedia Engineering, 2013, vol. 57, pp. 1251-1259; DOI: 10.1016/j.proeng.2013.04.158.
  • [39] T. Urban, M. Gołdyn, “How To Strengthen Flat Slabs on Punching Shear - Traditionally With Steel or Innovative, By Using Fiber Composite Materials?”, Engineering Structures and Technologies, 2019, vol. 11, no. 2, pp. 57-65; DOI: 10.3846/est.2019.10657.
  • [40] M.F. Ruiz, A. Muttoni, J. Kunz, “Strengthening of flat slabs against punching shear using post-installed shear reinforcement”, Structural Journal, 2010, vol. 107, no. 4, pp. 434-442.
  • [41] T. Urban, J. Tarka, “Strengthening of slab-column connections with CFRP strips”, Archives of Civil Engineering, 2010, vol. 56, no. 2, pp. 193-212; DOI: 10.2478/v.10169-010-0010-0.
  • [42] D. Szczech, R. Kotynia, “Effect of shear reinforcement ratio on the shear capacity of GFRP reinforced concrete beams”, Archives of Civil Engineering, 2021, vol. 67, no. 1, pp. 425-437; DOI: 10.24425/ace.2021.136481.
  • [43] M.D. Vanderbilt, “Shear Strength of Continuous Plates”, Journal of the Structural Division, 1972, vol. 98, no. ST5, pp. 961-973.
  • [44] T. Urban, Nośność na przebicie w aspekcie proporcji boków słupa. Badania doświadczalne elementów i konstrukcji betonowych. Raport 3. Łódź, 1994.
  • [45] G.J. Milligan, M.A. Polak, C. Zurell, “Finite element analysis of punching shear behaviour of concrete slabs supported on rectangular columns”, Engineering Structures, 2020, vol. 224, art. ID 111189; DOI: 10.1016/j.engstruct.2020.111189.
  • [46] M. Grabski, A. Ambroziak, “Influence of the shear cap size and stiffness on the distribution of shear forces in flat slabs”, Materials (Basel), 2022, vol. 15, no. 1; DOI: 10.3390/ma15010188.
  • [47] M. Grabski, “Punching shear capacity in the connection of the slab to column topped with a head”, Ph.D. thesis, Gdansk University of Technology, Poland, 2022.
  • [48] EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings. Brussels, Belgium: CEN (European Committee for Standardization), 2004.
  • [49] DIN EN 1992-1-1/NA:2011-01 Nationaler Anhand - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton und Spannbetontragwerken. Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. DIBt (Deutsche Institut für Bautechnik), 2011.
  • [50] ACI 318-19 Building Code Requirements for Structural Concrete. American Concrete Institute, Farmington Hills, MI, 2019.
  • [51] FIB (International Federation for Structural Concrete), fib Model Code for Concrete Structures 2010. Ernst & Sohn, 2013.
  • [52] K.-J. Bathe, E.N. Dvorkin, “A formulation of general shell elements - the use of mixed interpolation of tensorial components”, International Journal for Numerical Methods in Engineering, 1986, vol. 22, no. 3, pp. 697-722; DOI: 10.1002/nme.1620220312.
  • [53] J.D. Rodrigues, S. Natarajan, A.J.M. Ferreira, et al., “Analysis of composite plates through cell-based smoothed finite element and 4-noded mixed interpolation of tensorial components techniques”, Computers & Structures, 2014, vol. 135, pp. 83-87; DOI: 10.1016/j.compstruc.2014.01.011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-314b1a13-e60c-49b1-a593-0d51741d7a74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.