
71

Volume 116

Issue 2

August 2022

Pages 71-80 

International Scientific Journal

published monthly by the  

World Academy of Materials  

and Manufacturing Engineering 

© Copyright by International OCSCO World Press. All rights reserved. 2022 RESEARCH PAPER

DOI: 10.5604/01.3001.0016.1191

Boosting-based model for solving  
Sm-Co alloy’s maximum energy  
product prediction task

A.M. Trostianchyn a, I.V. Izonin b, Z.A. Duriagina a,c,  
R.O. Tkachenko d, V.V. Kulyk a,*, B.M. Havrysh d
a Department of Materials Science and Engineering, Lviv Polytechnic National University,  
12 Bandera St., Lviv, 79013, Ukraine
b Department of Artificial Intelligence, Lviv Polytechnic National University, 12 Bandera St.,  
Lviv, 79013, Ukraine
c The John Paul II Catholic University of Lublin, Al. Racławickie 14, 20-950 Lublin, Poland
d Department of Publishing Information Technologies, Lviv Polytechnic National University,  
12 Bandera St., Lviv, 79013, Ukraine
* �Corresponding e-mail address: kulykvolodymyrvolodymyrovych@gmail.com
ORCID identifier:  https://orcid.org/0000-0002-0642-0693 (A.M.T.);

 https://orcid.org/0000-0002-9761-0096 (I.V.I.);  https://orcid.org/0000-0002-2585-3849 (Z.A.D.);
 https://orcid.org/0000-0002-9802-6799 (R.O.T.);  https://orcid.org/0000-0001-5999-3551 (V.V.K.);
 https://orcid.org/0000-0003-3213-9747 (B.M.H.)

 

ABSTRACT

Purpose: This paper aims to decide the Sm-Co alloy’s maximum energy product prediction 
task based on the boosting strategy of the ensemble of machine learning methods.
Design/methodology/approach: This paper examines an ensemble-based approach to 
solving Sm-Co alloy’s maximum energy product prediction task. Because classical machine 
learning methods sometimes do not supply acceptable precision when solving the regression 
problem, the authors investigated the boosting ML model, namely Gradient Boosting. Building 
a boosting model based on several weak submodels, each of which considers the errors of the 
prior ones, provides substantial growth in the accuracy of the problem-solving. The obtained 
result is confirmed using an actual data set collected by the authors.
Findings: This work demonstrates the high efficiency of applying the ensemble strategy of 
machine learning to the applied problem of materials science. The experiments determined the 
highest accuracy of solving the forecast task for the maximum energy product of Sm-Co alloy 
formed on the boosting model of machine learning in comparison with classical methods of 
machine learning.
Research limitations/implications: The boosting strategy of machine learning, in 
comparison with single algorithms of machine learning, requires much more computational and 
time resources to implement the learning process of the model.
Practical implications: This work demonstrated the possibility of effectively solving Sm-Co 
alloy’s maximum energy product prediction task using machine learning. The studied boosting 
model of machine learning for solving the problem provides high accuracy of prediction, which 
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reveals several advantages of their use in solving issues applied to computational material 
science. Furthermore, using the Orange modelling environment provides a simple and intuitive 
interface for using the researched methods. The proposed approach to the forecast significantly 
reduces the time and resource costs associated with studying expensive rare earth metals 
(REM)-based ferromagnetic materials.
Originality/value: The authors have collected and formed a set of data on predicting the 
maximum energy product of the Sm-Co alloy. We used machine learning tools to solve the 
task. As a result, the most increased forecasting precision based on the boosting model is 
demonstrated compared to classical machine learning methods.
Keywords: Sm-Co alloys, Ensemble learning, Gradient boosting, Small data, Prediction accuracy
Reference to this paper should be given in the following way: 
A.M. Trostianchyn, I.V. Izonin, Z.A. Duriagina, R.O. Tkachenko, V.V. Kulyk, B.M. Havrysh, 
Boosting-based model for solving Sm-Co alloy’s maximum energy product prediction task, 
Archives of Materials Science and Engineering 116/2 (2022) 71-80. 
DOI: https://doi.org/10.5604/01.3001.0016.1191

METHODOLOGY OF RESEARCH, ANALYSIS AND MODELLING

accuracy of prediction, which reveals several advantages of their use in solving issues applied to computational material 
science. Furthermore, using the Orange modelling environment provides a simple and intuitive interface for using the 
researched methods. The proposed approach to the forecast significantly reduces the time and resource costs associated with 
studying expensive rare earth metals (REM)-based ferromagnetic materials. 
Originality/value: The authors have collected and formed a set of data on predicting the maximum energy product of the Sm-
Co alloy. We used machine learning tools to solve the task. As a result, the most increased forecasting precision based on the 
boosting model is demonstrated compared to classical machine learning methods. 
Keywords: Sm-Co Alloys, Ensemble Learning, Gradient Boosting, Small Data, Prediction Accuracy. 
 
Reference to this paper should be given in the following way: 
A.M. Trostianchyn, I.V. Izonin, Z.A. Duriagina, R.O. Tkachenko, V.V. Kulyk, B.M. Havrysh, Boosting-based model for 
solving Sm-Co alloy’s maximum energy product prediction task, 
 
 
 
 
 
 
1. Introduction 

 
For the last few decades, the progress in material science 

has been associated with such paradigms as "computational 
science", "big data", "material informatics", and "data-
driven". Reviews [1-4] describe in an excellent way the 
historical aspects and leading features of the development of 
the machine learning (ML) approach for solutions to 
material science problems. It is evident that experimental 
research in materials science takes a long time and requires 
significant resources and expensive equipment. For instance, 
finding new materials takes 10 to 20 years from study to the 
first usage [5]. At the same time, Material Genome Initiative 
(MGI) [6] considers ML-based methods as a tool for 
discovering, developing, and improving modern materials 
twice as fast with a significant cost reduction. Due to MGI 
and open access resources like NOMAD [7], Materials 
Project [8], Aflowlib [9], and OQMD [10], the rapidly 
growing of works in this area has taken place for the last 
years [1,2]. The various types of research involve predicting 
materials properties [11-13], discovering new compounds 
[14], modelling professional risk [15], solving the problems 
of classification [16,17], regression [18,19] and clustering 
[20], searching the hidden relationships [21], etc. 

However, along with the apparent advantages, machine 
learning methods in materials science have characteristics 
that complicate the search, collection, analysis, and 
application for practical purposes of the necessary data. 
Firstly, the past data obtained by experiments or simulations 
must be available. The challenges are that data from diverse 
sources, as a rule, are presented differently (text, tables, 
figures), contain unspecified dependencies, and property 
values are sometimes given in different measurement units. 

In addition, they often have the so-called "gaps", i.e., missed 
parameters and characteristics. Another problem is that 
properties can describe any material with discrete values and 
by descriptive data such as text (e.g., the experience of use) 
and images (e.g., microstructure). These factors significantly 
complicate the creation of a source database that can be used 
for work with machine learning algorithms. In other words, 
the first step for using ML methods in the field of interest is 
estimating the possibility of collecting a dataset with clear, 
specific, and reliable data. The following steps include 
building a model and assessing its ability to adequately work 
with various machine learning algorithms to solve the 
problem [5]. In the case of modelling to predict material 
properties, the material characteristics (e.g., chemical 
composition) are called "input data". 

In contrast, the properties (e.g., Yung's modulus, 
coercivity) are the "target" or "output data" [2]. Together, 
these data are called "vectors" or "fingerprints" in literature. 
During prognostic modelling, particular attention should be 
spent on the correct distribution of the collected dataset for 
training and test sampling and checking the correctness of 
the constructed model. For example, regression methods can 
be used if numerical values represent the target attribute (the 
property to be predicted). In contrast, classification methods 
are used for a categorical target (for example, a metal 
compound or not). In some cases, ensemble machine 
learning methods, which combine the results of individual 
methods, significantly increase the accuracy and adequacy 
of the model [1]. 

Finally, it is worth being noted that the possibility of 
using machine learning in materials science is limited and 
requires an assessment of the feasibility of its use in each 
case. Therefore, this work aims to estimate expediency using 
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ML methods to predict Sm-Co alloy's maximum energy 
product.  

The main contribution of this paper can be summarized 
as follows: 
 we have examined a boosting-based machine-learning 

model for solving Sm-Co alloy’s maximum energy 
product prediction task; 

 we have chosen the optimal parameters of the Gradient 
boosting repressor that is the basic of the developed 
model; 

 we compare our results with existing ML-based methods 
and show the higher prediction accuracy of the proposed 
model. 
The paper has the following structure. In section 2, we 

analysed existing works and showed the topicality of the 
stated task. In section 3, we describe the collected by us 
dataset used for modelling. In addition, we have described 
the proposed model and the number of performance 
indicators used for the evaluation of its efficiency. 
Modelling using Orange software as well as numerical and 
visual obtained results, are described in section 4. 
Summarization of the conducted research is in the 
Conclusion section. 

 
 

2. State-of-the-arts 
 

Sm-Co permanent magnets have the highest magnetic 
properties, second only to magnets based on the compound 
Nd2Fe14B [22]. However, due to the high Curie temperature 
of the ferromagnetic phases SmCo5 and Sm2Co17, they are 
indispensable when operating at high temperatures 
(> 150 °C). The magnetic properties of REM ferromagnetic 
materials almost reached the maximum possible values. 
A REM-based magnetic material's maximum possible 
energy product is determined by saturation magnetisation 
Ms: (BH)max ≤ (4πMs)2/2 [23]. However, theoretical 
calculations and experimental results show that in the case 
of the formation of the nanostructured state, it is possible 
almost to double the magnetic properties of existing 
materials [24]. 

One possible way to form the nanostructured state in 
REM-based alloys is treatment under hydrogen using the 
HDDR process (hydrogenation, disproportionation, 
desorption, recombination) [25-27]. Over the last two 
decades, we have accumulated a large quantity of 
experimental data about phase transformations, 
crystallographic characteristics, texture parameters and 
microstructure evolution depending on the initial elemental 
composition of Sm-Co alloys and HDDR parameters 
(hydrogen pressure, maximum heating temperature, holding 

time, cooling conditions, etc.) [28,29]. The final step of the 
study is to find the dependence of magnetic properties on the 
above parameters. Production of prototypes of sintered 
magnets and experimental establishment of their 
characteristics is a long and laborious process, with high 
financial and resource costs. 

Literature data indicate the potential possibility of 
machine learning tools to forecast the magnetic properties of 
materials [30-33]. Considering the high cost of REM and the 
need for a significant number of experiments, we decided 
previously to evaluate the potential magnetic properties of 
our samples. As mentioned above, one of the most critical 
tasks in applying machine learning to solve material science 
problems is the availability of past data needed to create an 
original dataset and build a model and assess the real 
possibility of using this approach to solve a specific 
problem. Accordingly, in the first stage, we created a 
database based on literature sources in order to build an 
adequate model for predicting magnetic properties, which 
will be used in the future to predict the properties of our 
samples processed by the HDDR method. 

During the creation of the database, we encountered 
several problems related to the completeness of the data in 
different sources, different approaches of the authors to the 
description of the microstructure parameters, etc., which are 
described in more detail in [12]. Based on the created 
database, we built a predictive model. We estimated the 
accuracy of various machine learning methods in predicting 
the coercive force of Sm-Co system ferromagnetic alloys 
[12]. It should be noted that the peculiarity of assessing the 
correctness of the prognostic model is that the data 
management model can "remember" each vector separately 
from the database. This case will demonstrate 100% 
accuracy of working with the same dataset but most likely 
will not work correctly with the other one. Therefore, 
reliable results are provided by k-fold cross-validation when 
randomly divided k-1 parts of the data set are used for 
training and one part for testing. Quantitative assessment of 
the accuracy of predictive models can be used using 
performance indicators of classification/regression methods, 
such as accuracy, sensitivity, specificity, Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), 
coefficient of correlation (R), explained variance (R2) etc. 
[1]. 

Our results showed that the best results in predicting the 
coercive force were obtained using a stacking ensemble 
model based on such heterogeneous elements as Neural 
Networks, AdaBoost, Gradient Boosting and Random 
Forest. The following values of Performance indicators 
Proposed ensemble model were obtained: MSE = 44.223; 
RMSE = 6.650; MAE = 4.201; and R2 = 0.636 [12]. 
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This work is a continuation of the research and involves 
the construction of a model for predicting the maximum 
energy product (BH)max ferromagnetic alloys of the Sm-Co 
system. In this case, the main feature is the limited available 
source data. For comparison, of the more than 80 literature 
sources used to create the database, only about 25 contain 
measurement results (BH)max. In other words, a significant 
reduction in the vectors in the database takes place, as 
described below. It is known [34] that the amount of source 
data directly affects the accuracy of machine learning 
methods and is crucial in assessing the feasibility of such an 
approach. Based on this, we propose using the Boosting-
Based Model to solve Sm-Co alloy's maximum energy 
product prediction task. 
 
 
3. Materials and methods 

 
We collected a database to predict the magnetic 

properties of REM permanent magnets using ML methods 
on the example of experimental study of Sm-Co 
ferromagnetic alloys available in the literature for the last 
decade. At that the methods of sample manufacturing do not 
take into account. Thus, the targets are magnetic properties, 
determined depending on chemical and phase composition, 
microstructure, texture and the average size of structural 
components. The following describes the features of dataset 
collection and the ML approach to solving the prediction 
task. 

 
3.1. Dataset collection. 

 
The dataset for Sm-Co alloy’s maximum energy product 

prediction task is a part of our database collected from 
literature data and described in detail in [12]. The input data 
(Fig. 1) included the content of chemical elements in the 
alloy, phase composition, material state, presence of texture 
and microstructure parameters. The main difference in this 
dataset from the full version of the database is the removal 
of vectors that don’t contain the values of (ВH)max as the 
target. 

In the result, we obtain the datasheet that contains only 
190 vectors compared to 420 in the full version. Thirty input 
attributes describe each included observation. The elements 
(the content of Sm, Co, Fe, Cu, Zr and total amount such 
REM metals as La, Ce and Pr), the average size of structural 
components and maximum energy product are presented as 
numerical, while the rest of the data in a categorical way. 
The data on phase composition contains information about 
the main ferromagnetic and second phases (SmCo5, 
Sm2Co17, Sm2Co7, SmCo7, SmCo3, Sm2O3, Co, Fe, FeCo, 

and Zr-rich phases). Powder, sintered magnet or ribbon 
represents the state of the material. The microstructure 
parameters included type (lamellar, flake, nanocrystalline, 
and cellular), average size, homogeneity and regularity. In 
addition, each vector contains information about the 
presence of texture. 

 

 
 

Fig. 1. Schematic representation of the collected dataset 
 
3.2. Boosting model. 

 
The modern development of artificial intelligence tools 

and its application to solve applied materials science 
problems provides a reduction in time, cost reduction, 
material costs, and so on. However, the features of each 
specific situation determine the search for the most optimal 
method of its solution based on the accuracy of work, the 
speed of learning time of the model, minimizing the 
computing resources required for the operation of a method 
[34]. In the case of limited amounts of data, which is very 
typical for various materials science problems in the first 
place is the accuracy of the problem solving [35]. 

Many developments and studies on machine learning 
methods to solve regression or classification problems 
demonstrate the low accuracy of single-based methods [36]. 
One possible solution to avoid this problem is to apply a 
strategy of assembling machine learning methods. There are 
three most commonly used options: bagging, boosting and 
stacking. 

In this paper, the authors investigate the boosting 
strategy of integrating machine learning methods to improve 
the forecast accuracy of the Sm-Co alloy’s maximum energy 
product [37]. It involves constructing and using a set of weak 
classifiers that classify objects better than random guessing 
and taking their response into account when constructing 
stronger classifiers. Thus, the boosting hypothesis involves 
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an iterative process of learning weak classifiers and 
collecting them into one robust classifier. 

This approach aims to reduce the supervised machine 
learning algorithm variance significantly. As a result, it 
substantially increases the accuracy of the work of classifiers 
or regressors based on this ensemble strategy. 

Among the disadvantages of this approach should be 
noted the iterative nature of the learning procedure and the 
consistent operation of the boosting algorithm, which 
significantly affects the speed of such methods. However, in 
cases where the priority is the accuracy of the work and data 
sets for processing ‒ small, such a strategy is entirely 
justified. 

Among the many such methods, which essentially differ 
only in some algorithm elements, the authors used and 
studied one of the earliest busting methods of machine 
learning ‒ Gradient Boosting. 

The Gradient Boosting method is based on the idea of 
consistent use of weak models and taking into account the 
outputs of the previous one to increase the accuracy of the 
next one. Such an approach should provide an opportunity 
to learn each subsequent model from the mistakes of the 
previous one. 

Decision trees are usually used as weak classifiers. 
An essential step of the algorithm is to determine the 

stage of its stop. That is, at what phase of consistent 
inclusion and training of weak classifiers to build the 
strongest, i.e., the most accurate, should be stopped. In this 
case, when determining and minimizing the loss function, a 
gradient descent algorithm is used, which is fast and 
relatively accurate and provides a quick search for the 
minimum value of the user-selected loss function. 

 
 

3.3. Performance indicators. 
 
Estimation of the accuracy of the studied model in 

solving the problem of forecasting Sm-Co alloy’s maximum 
energy product was performed using several indicators, in 
particular [38]: 
1. MSE (Mean Square Error) 

 
��� � �

� ∑ �𝑦𝑦����� � 𝑦𝑦�����������  (1) 
 
2. RMSE (Root Mean Square Error) 
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3. MAE (Mean Absolute Error) 
 
��� � �

� ∑ �𝑦𝑦����� � 𝑦𝑦����������  (3) 
 

4. R2 (Coefficient of determination) 
 
𝑅𝑅2 � 1 � ��

��� (4) 

 
where: 𝑦𝑦����� are the true values of the Sm-Co alloy’s 
maximum energy product; 𝑦𝑦�����  are the respected predicted 
values of the Sm-Co alloy’s maximum energy product;  
� � 1,𝑁𝑁 is the current point; 𝑁𝑁is the number of observed 
vectors; 𝜎𝜎�� is the total sum of squares and𝜎𝜎� is the sum of 
squares of residuals. 

 
 

4. Results and discussion 
 

4.1. Modelling. 
 

The simulation of the work of the boosting ensemble 
took place using the environment of intellectual analysis and 
data visualization ‒ Orange. This approach is explained by: 
the ease of use of this program without the need for deep 
knowledge of the user in the field of machine learning; 
construction of schemes of data analysis and visualization 
using visual programming, which provides the possibility of 
using the program by specialists without programming 
experience; availability of additional procedures for data 
processing, feature selection, cross-validation, etc., which 
 

 
 

Fig. 2. Flowchart of the modelling process in Orange 
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significantly simplifies the work on data analysis; a wide 
variety of means and tools for visualization of the obtained 
results for their optimal presentation; possibility to select the 
necessary parameters of the model in the dialogue mode; 
high speed of work due to the optimized operation of 
implemented machine learning methods, etc. The scheme of 
the modelling process is shown in Figure 2. 

The studied models' effectiveness was evaluated using 
the ten-fold cross-validation procedure to ensure the 
reliability of the simulation results (Fig. 3). 

 

 
 

Fig. 3. 10-fold cross validation 
 

For a comprehensive analysis of the results obtained, the 
performance evaluation of the investigated models was 
performed using four different accuracy indicators (1)-(4). 

The results of different machine learning models have 
been visualized in the form of scatter plots for the possibility 
of comparing the effectiveness of their work. 
 
4.2. Results. 
 

As a result of modelling using 10-fold cross-validation, 
the values of indicators (1)-(4) were obtained, summarized 
in Table 1. 

 
Table 1. 
Modelling results 

Method MSE RMSE MAE R2 
Gradient 
Boosting 17.966 4.239 2.885 0.798 

 
It should be noted that the values of the optimal 

parameters of the method are as follows: 
 maximal number of trees = 10000; 
 limit depth of individual trees = 5; 
 minimal number of trees for splitting subsets = 2; 
 learning rate = 0.1. 
 
4.3. Comparison and discussion 
 

Comparison of different machine learning algorithms 
based on (1)-(4) indicators is given in Table 2. 

Table 2. 
Comparison of different machine learning algorithms 

Method MSE RMSE MAE R2 
Tree 41.232 6.421 4.692 0.556 
SVM 39.048 6.249 5.128 0.580 
SGD 33.230 5.765 4.162 0.642 

Linear 
regression 32.500 5.701 4.356 0.650 

AdaBoost 20.362 4.512 2.981 0.781 
Random 
Forest 20.049 4.478 3.162 0.784 

Gradient 
Boosting 17.966 4.239 2.885 0.798 

 
From the results presented in Table 2, we can say the 

following: 
1. all studied models demonstrate adequacy (coefficient of 

determination greater than 0.5). The obtained result 
suggests the possibility of using machine learning tools 
to solve the problem of the Sm-Co alloy's maximum 
energy product prediction; 

2. the most accurate results are obtained when using 
ensemble methods. This confirms the hypothesis that the 
strategy of the ensemble in solving the problem has been 
fully justified; 

3. the highest accuracy indicators for all four metrics (1)-
(4) during the solution of the problem was obtained 
based on the use of a boosting model based on Gradient 
Boosting. 
The Scatter Plot widget of the Orange software was used 

to illustrate the results of the research methods. It should be 
noted that Figure 4 shows graphs for only three ensemble 
methods, as they provide the highest forecast accuracy of the 
Sm-Co alloy's maximum energy product. 

Scatter Plot shows the ratio of two variables in the form 
of points on the Cartesian space. In this case, the original 
values of the required property along to OX axis and the 
predicted values obtained by the studied algorithm of 
machine learning along the OY axis are demonstrated. The 
correlation field formed by such a graph can illustrate the 
accuracy level of the selected machine learning model. The 
narrower the correlation field (from the side diagonal), the 
more accurate the chosen machine learning algorithm. 
Accordingly, the wide correlation field shows the regressor's 
poor properties in predicting the desired result. 

As shown in Figure 4a, the studied boosting model 
demonstrates the smallest scatter of values ‒ the highest 
correlation field of the other two ensemble methods.  

4.2.	�Results

4.3.	Comparison and discussion
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a) b) 

     
c) 

 
 

Fig. 4. Flowchart of the modelling process in Orange 
 

This result is confirmed by the numerical estimates of 
accuracy based on (1)-(4) obtained in Table 2. Therefore, the 
ensemble model based on boosting can be used when 
solving applications for forecasting Sm-Co alloy's 
maximum energy product. 

5. Conclusions 
 
This paper considers the problem of the Sm-Co alloy's 

maximum energy product prediction. The authors propose 
an approach based on ensemble learning to solve it. Because 

5.	�Conclusions
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classical machine learning methods do not always provide  
a sufficient level of accuracy when solving the regression 
problem (as confirmed in the paper), the authors used  
a boosting strategy for assembling machine learning 
methods, namely the Gradient Boosting method. Building  
a boosting model based on several weak sub-models, each 
of which considers the results of previous work, 
significantly increases the accuracy of solving the problem. 
This is confirmed using an actual data set collected by the 
authors.  

According to the obtained results, all studied models 
demonstrate adequacy (coefficient of determination greater 
than 0.5). The obtained result suggests the possibility of 
using machine learning tools to solve the problem of the Sm-
Co alloy's maximum energy product prediction. The most 
accurate results of solving Sm-Co alloy's maximum energy 
product prediction task were obtained using boosting 
machine learning model. The highest accuracy indicators for 
all four metrics (1)-(4) during the solving of the stated task 
was obtained based on the use of a boosting model based on 
Gradient Boosting. In addition; we show the results of the 
investigated methods in graphical form. It is shown the same 
results as in numerical form. 

Given that the studied boosting model of machine 
learning provides high prediction accuracy, this reveals 
several advantages of their use in solving applied problems 
of computational material science. Furthermore, using the 
Orange modelling environment provides a simple and 
intuitive interface for using the studied methods. The 
proposed prediction approach significantly reduces the time 
and resource costs associated with studying expensive 
ferromagnetic materials based on rare earth metals. 

Among the limitations of the proposed approach, it 
should be emphasised that the boosting strategy of machine 
learning compared to single-based machine learning 
algorithms, requires significantly more computing and time 
resources to implement the model learning procedure. 

Further research will be conducted to apply other 
strategies to improve the accuracy of the problem of the Sm-
Co alloy's maximum energy product prediction, particularly 
the use of artificial neural network stacking. 
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