PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the load level during cyclic torsion on the fatigue life and fracture surface of tin-zinc-lead bronze RG7

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study analysed samples made of tin-zinc-lead bronze RG7 after fatigue tests under cyclic torsion conditions. The behaviour of the material used in both mechanical and building structures was analysed. Samples made for various load levels were subjected to this analysis. Fatigue cracks during cyclic torsion of samples made of RG7 bronze were analysed for nine load levels. Fatigue crack surfaces were analysed, with particular emphasis on the crack direction. For lower loads, the macroscopic fatigue crack surface is inclined at an average angle of 40°. The angle of the inclined plane of the cyclic torsion crack tends to decrease with increasing stress amplitude. The less load the tested samples carry, the more uniform the appearance of the crack surface. In the case of samples tested at lower stresses, a crack zone was observed in the lower part of the crack, which was damaged in the final phase of the test. This part of the crack was characterised by a rougher surface, where the tearing of material grains could be observed. The 3D surface analysis showed that a large fractal dimension was obtained for the stress amplitude τan in the range of higher loads, indicating the surface's high complexity. Analysing the isotropy of the surface using the Str parameter and assessing the percentage level of isotropy, it can be concluded that the obtained surfaces have a periodic anisotropic character, which proves that a structure subjected to high stresses has a directed and dominant direction of cracking.
Twórcy
  • Opole University of Technology ul. Prószkowska 76 45-758 Opole, Poland
  • Opole University of Technology ul. Prószkowska 76 45-758 Opole, Poland
  • Opole University of Technology ul. Prószkowska 76 45-758 Opole, Poland
Bibliografia
  • 1. Brown M.W., Miller K.J. Initiation and growth of cracks in biaxial fatigue. Fatigue and Fracture of Engineering Materials and Structures 1979; 1. https://doi.org/10.1111/j.1460-2695.1979.tb00380.x.
  • 2. McDiarmd D.L. Fatigue under out-of-phase biaxial stresses of different frequencies. Multiaxial Fatigue. ASTM STP 853. In: K.M. Miller, M.W. Brown, editors. 1985; 606–621.
  • 3. Fatemi A., Socie D.F. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue and Fracture of Engineering Materials and Structures 1988; 11. https://doi.org/10.1111/j.1460-2695.1988.tb01169.x.
  • 4. Socie D.F. Multiaxial fatigue damage models. Journal of Engineering Materials and Technology, Transactions of the ASME 1987; 109(4).
  • 5. Nishihara T., Kawamoto M. The strength of metals under combined bending and torsion with phase difference. Memories of the College of Engineering. Kyoto Imperial University 1945; 11:85–112.
  • 6. Małecka J., Łagoda T. Fatigue and fractures of RG7 bronze after cyclic torsion and bending. International Journal of Fatigue 2023; 168. https://doi.org/10.1016/j.ijfatigue.2022.107475.
  • 7. Nikitin A., Palin-Luc T., Shanyavskiy A., Bathias C. Comparison of crack paths in a forged and extruded aeronautical titanium alloy loaded in torsion in the gigacycle fatigue regime. Engineering Fracture Mechanics 2016; 167. https://doi.org/10.1016/j.engfracmech.2016.05.013.
  • 8. Gryguć A., Behravesh S.B., Jahed H., Wells M., Williams B., Sud X. Multiaxial fatigue and cracking orientation of forged AZ80 magnesium alloy. Procedia Structural Integrity 2020; 25. https://doi.org/10.1016/j.prostr.2020.04.055.
  • 9. Fonte M., Reis L., Romeiro F., Li B., Freitas M. The effect of steady torsion on fatigue crack growth in shafts. International Journal of Fatigue 2006; 28(5–6). https://doi.org/10.1016/j.ijfatigue.2005.06.051.
  • 10. Li R.H., Zhang P., Zhang Z.F. Torsional fatigue cracking and fracture behaviors of cold-drawn copper: effects of microstructure and axial stress. Acta Metallurgica Sinica (English Letters) 2019; 32. https://doi.org/10.1007/s40195-019-00965-5.
  • 11. Serrano-Munoz I., Shiozawa D., Dancette S., Verdu C., Buffiere J.Y. Torsional fatigue mechanisms of an A357-T6 cast aluminium alloy. Acta Materialia 2020; 201. https://doi.org/10.1016/j.actamat.2020.09.046.
  • 12. Xue H.Q., Bathias C. Crack path in torsion loading in very high cycle fatigue regime. Engineering Fracture Mechanics 2010; 77(11). https://doi.org/10.1016/j.engfracmech.2010.05.006.
  • 13. Li R.H., Zhang Z.J., Zhang P., Zhang Z.F. Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading. Acta Materialia 2013; 61(15). https://doi.org/10.1016/j.actamat.2013.06.032.
  • 14. Chen J.Z., Zhang B., Song Z.M., Wang H.Y., Zhang G.P. Influence of pre-torsion angles on torsion fatigue properties of 45CrMoVA steel bars. International Journal of Fatigue 2020; 137. https://doi.org/10.1016/j.ijfatigue.2020.105645.
  • 15. Zhizhong H., Yusheng W., Heping C., Lihua M. Mechanism map of torsional fatigue fracture. Acta Metallurgica Sinica (English Letters) 1991; 4(2).
  • 16. Tschegg E.K. Mode III and Mode I fatigue crack propagation behaviour under torsional loading. Journal of Material Science 1983; 18.
  • 17. Wang C.H., Miller K.J. The effect of mean shear stress on torsional fatigue behaviour. Fatigue and Fracture of Engineering Materials and Structures 1991; 14(2–3). https://doi.org/10.1111/j.1460-2695.1991.tb00659.x.
  • 18. Makabe C., Socie D.F. Crack growth mechanism in precracked torsional fatigue specimens. Fatigue and Fracture of Engineering Materials and Structures 2001; 24(9). https://doi.org/10.1046/j.1460-2695.2001.00430.x.
  • 19. Karolczuk A. Plastic strains and the macroscopic critical plane orientations under combined bending and torsion with constant and variable amplitudes. Engineering Fracture Mechanics 2006; 73(12). https://doi.org/10.1016/j.engfracmech.2006.02.005.
  • 20. Karolczuk A., Macha E. Selection of the critical plane orientation in two-parameter multiaxial fatigue failure criterion under combined bending and torsion. Engineering Fracture Mechanics 2008; 75(3–4). https://doi.org/10.1016/j.engfracmech.2007.01.021.
  • 21. Karolczuk A. Non-local area approach to fatigue life evaluation under combined reversed bending and torsion. International Journal of Fatigue 2008; 30(10–11). https://doi.org/10.1016/j.ijfatigue.2008.01.007.
  • 22. Łagoda T., Głowacka K., Kurek A. Fatigue life of aluminium alloys based on shear and hydrostatic strain. Materials 2020; 13(21). https://doi.org/10.3390/ma13214850.
  • 23. Łagoda T., Kurek M., Głowacka K. A formulation of the criterion for multiaxial fatigue in terms of complex number as proposed by Macha. International Journal of Fatigue 2020; 133. https://doi.org/10.1016/j.ijfatigue.2019.105430.
  • 24. Głowacka K., Łagoda T. Application of multiaxial fatigue criterion on critical plane to determine lifetime of composite laminates. Engineering Fracture Mechanics 2023; 292. https://doi.org/10.1016/j.engfracmech.2023.109644.
  • 25. Lopez-Crespo P., Moreno B., Lopez-Moreno A., Zapatero J. Study of crack orientation and fatigue life prediction in biaxial fatigue with critical plane models. Engineering Fracture Mechanics 2015; 136. https://doi.org/10.1016/j.engfracmech.2015.01.020.
  • 26. Zieliński D., Podulka P., Jiang C.-P., Macek W. Comparative assessment of entire bending-torsion fracture surface for 10HNAP steel using different optical measurement techniques. Advances in Science and Technology Research Journal 2025; 19(6):267–274. https://doi.org/10.12913/22998624/202668.
  • 27. Walczuk-Gągała P., Pater Z., Wójcik Ł., Lis K. Determination of critical damage function values of CW008A copper and S355 steel in tensile and torsion tests. Advances in Science and Technology Research Journal 2023; 17(2):173–180. https://doi.org/10.12913/22998624/161053.
  • 28. Kubit A., Macek W., Zielecki W., Szawara P., Kłonica M. Fracture surface topography parameters for S235JR steel adhesive joints after fatigue shear testing. Advances in Science and Technology Research Journal 2023; 17(5):130–139. https://doi.org/10.12913/22998624/171490.
  • 29. Achtelik A., Kurek M., Kurek A., Kluger K., Pawliczek R., Łagoda T. Non-standard fatigue stands for material testing under bending and torsion loading. AIP Conference Proceedings 2029. Mechatronic Systems and Materials 2018; 020001-1–020001-14.
  • 30. Strzelecki P., Mazurkiewicz A., Musiał J., Tomaszewski T., Słomion M. Fatigue life for different stress concentration factors for stainless steel 1.4301. Materials 2019; 12:3677.
  • 31. Strzelecki P., Wachowski M. Effect of the stress concentration factor on the final fracture zone of aluminium AW 6063 T6 for rotating bending specimens. Materials Today Communications 2022; 31:103766. https://doi.org/10.1016/j.mtcomm.2022.103766.
  • 32. Leach R. (ed.). Characterisation of Areal Surface Texture. Springer-Verlag, Berlin-Heidelberg; 2013.
  • 33. https://www.keyence.eu/ss/products/microscope/roughness/surface/tab02_b.jsp.
  • 34. Brown C.A., Charles P.D., Johnsen W.A., Chesters S. Fractal analysis of topographic data by the patchwork method. Wear 1993; 161(1–2):61–67. https://doi.org/10.1016/0043-1648(93)90453-S.
  • 35. Berkmans F., Lemesle J., Guibert R., Wieczorowski M., Brown C., Bigerelle M. Two 3D Fractal-Based Approaches for Topographical Characterization: Richardson Patchwork versus Sdr. Materials 2024; 17:2386. https://doi.org/10.3390/ma17102386.
  • 36. Brown C.A., Siegmann S. Fundamental scales of adhesion and area–scale fractal analysis. International Journal of Machine Tools & Manufacture 2001; 41:1927–1933. https://doi.org/10.1016/S0890-6955(01)00057-8.
  • 37. Żak K., Grzesik W. Metrological aspects of surface topographies produced by different machining operations regarding their potential functionality. Metrology and Measurement Systems 2017; 24(2). https://doi.org/10.1515/mms-2017-0027.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-313fe977-469f-4807-acec-3b8158de4fc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.