Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper a summary of our previously realized and published work connected with constructing collective intelligent evolutionary multi-agent systems for time series prediction, based on multi-layered perceptrons is shown. Besides recalling our past papers, we describe the whole concept, present an implementation in a contemporary, componentoriented software framework AgE 3.0 and we conduct a number of experiments, finding different optimal parametrization for the considered instances of the problems (popular Mackey-Glass chaotic time series). The paper may be useful for a practitioner willing to use our meatheuristic algorithm (EMAS) along with the idea of collective agent-based system in order to realize prediction tasks.
Rocznik
Tom
Strony
85--96
Opis fizyczny
Bibliogr. 21 poz., 1 il., rys., wykr.
Twórcy
autor
- Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
autor
- Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] S. Abar, G.K. Theodoropoulos, P.Lemarinier, and G.M.P. O’Hare. Agent based modelling and simulation tools: A review of the state-of-art software. Computer Science Review, pages -, 2017.
- [2] A. Byrski. Evolutionary search for optimal parameters of predicting neural networks. In Mat. Warsztatów Naukowych Algorytmy Ewolucyjne i Optymalizacja Globalna (KAEiOG 2002) oraz Konferencji Systemy Rozmyte (KSR 2002). Politechnika Warszawska, Wydział Elektroniki i Technik Informacyjnych, 2002.
- [3] A. Byrski and J. Bałamut. Evolutionary neural networks in collective intelligent predicting system. In L. Rutkowski, editor, Seventh International Conference on Artificial Intelligence and Soft Computing. Springer Verlag, 2004.
- [4] A. Byrski, J. Dobrowolski, and K. Tobola. Prace Naukowe, pages 59-65, 2008.
- [5] A. Byrski and M. Kisiel-Dorohinicki. Evolving rbf networks in a multiagent system. Neural Network World, 12(2):440, 2002.
- [6] A. Byrski and M. Kisiel-Dorohinicki. Immune-based optimization of predicting neural networks. In V.S. Sunderam, G. Dick van Albada, Peter M. A. Sloot, and J.J. Dongarra, editors, Computational Science - ICCS 2005, 5th International Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings, Part III, volume 3516 of Lecture Notes in Computer Science, pages 703-710. Springer, 2005.
- [7] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Agent-based evolution of neural network architecture. In M. Hamza, editor, Proc. of the IASTED Int. Symp.: Applied Informatics. IASTED/ACTA Press, 2002.
- [8] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Immunological selection in agent-based optimization of neural network parameters. In K. Wegrzyn-Wolska and P.S. Szczepaniak, editors, Advances in Intelligent Web Mastering, Proceedings of the 5th Atlantic Web Intelligence Conference - AWIC 2007, Fontainebleau, France, June 25 - 27, 2007, volume 43 of Advances in Soft Computing, pages 62-67. Springer, 2007.
- [9] K. Cetnarowicz, M. Kisiel-Dorohinicki, and E. Nawarecki. The application of evolution process in multi-agent world (MAW) to the prediction system. In M. Tokoro, editor, Proc. of the 2nd Int. Conf. on Multi-Agent Systems (ICMAS’96). AAAI Press, 1996.
- [10] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and C. Greenough. Exploitation of high performance computing in the flame agent-based simulation framework. In 2012 IEEE 14th International Conference on High Performance Computing and Communication 2012 IEEE 9th International Conference on Embedded Software and Systems, pages 538-545, June 2012.
- [11] N. Collier and M. North. Parallel agent-based simulation with repast for high performance computing. SIMULATION, 89(10):1215-1235, 2013.
- [12] S. Haykin. Neural Networks and Learning Machines. Pearson, 2008.
- [13] N.K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering. The MIT Press, 1996.
- [14] K.E. Lane-deGraaf, R.C. Kennedy, S.N. Arifin, G.R. Madey, A. Fuentes, and H. Hollocher.
- [15] A. Liefooghe, L. Jourdan, and E.-G. Talbi. Technical report.
- [16] T. Masters. Neural, Novel and Hybrid Algorithms for Time Series Prediction. John Wiley and Sons, 1995.
- [17] V. Petridis and A. Kehagias. Predictive Modular Neural Networks - Application to Time Series. Kluwer Academic Publishers, 1998.
- [18] K. Pietak and M. Kisiel-Dorohinicki. Agent-based framework facilitating component-based implementation of distributed computational intelligence systems. In Ngoc-Thanh Nguyen, Joanna Kołodziej, Tadeusz Burczyński, and Marenglen Biba, editors, Transactions on Computational Collective Intelligence X, pages 31-44, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
- [19] V. Suryanarayanan, G. Theodoropoulos, and M. Lees. Pdes-mas: Distributed simulation of multi-agent systems. Procedia Computer Science, 18:671 - 681, 2013.
- [20] Z. Toth and E. Kalnay. Ensemble forecasting at ncep and the breeding method. Monthly Weather Review, 125(12):3297-3319.
- [21] P. Wittek and X. Rubio-Campillo. Scalable agent-based modelling with cloud hpc resources for social simulations. In 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pages 355-362, Dec 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-313b80d5-cd0f-4264-b6f0-45ee977d4dde