
Collectively Intelligent Prediction
in Evolutionary Multi-agent System

Joanna Kijak, Piotr Martyna, Aleksander Byrski,

Łukasz Faber, Kamil Piętak, and Marek Kisiel-Dorohinicki

Abstract—In the paper a summary of our previously realized
and published work connected with constructing collective
intelligent evolutionary multi-agent systems for time series
prediction, based on multi-layered perceptrons is shown. Besides
recalling our past papers, we describe the whole concept,
present an implementation in a contemporary, component-
oriented software framework AgE 3.0 and we conduct a number
of experiments, finding different optimal parametrization for
the considered instances of the problems (popular Mackey-Glass
chaotic time series). The paper may be useful for a practitioner
willing to use our meatheuristic algorithm (EMAS) along with the
idea of collective agent-based system in order to realize prediction
tasks.

Index Terms—evolutionary neural networks, agent-based
computing, time series prediction, collective intelligence,
metaheuristic optimization

I. INTRODUCTION

FOR a long period of time we authors have been

tackling neural network optimization problem using

an a evolutionary approach in agent-based environment.

These approaches, involving the hybridization of EMAS

(Evolutionary Multi-Agent System [9]) and neural-based

collective intelligence, also involvement of immunological

inspirations lead to obtaining interesting results, calling for

further exploration and extension.

We have started with developing a hybrid of neural network

based prediction system working as an ensemble in a multi

agent system EMAS [9] where the agents contained genotypes

describing the parameters of the networks, and the whole

system worked as a prediction system, at the same time

evolving the structure and parameters of the predictors [2],

[7].

In most of our works we used Multi-Layered Perceptrons,

keeping in mind that these neural networks are universal

approximators and are able to learn any possible function,

providing that appropriate configuration with regard to the

number of neurons in the hidden layers and the parameters

of the training are used [12]. Later we have also used Radial

Basis Function Networks, being also universal approximator

[5].

We have also designed an ensemble predictor according to

PREMONN (PREdictive MOdular Neural Networks) defined

by Petridis and Kehagias [17], treating our agents in EMAS

as parts of collective intelligence applied to enhancing the

J. Kijak, P. Martyna, A. Byrski, Ł. Faber, K. Piętak and
M. Kisiel-Dorohinicki are with Department of Computer Science,
Faculty of Computer Science, Electronics and Telecommunications,
AGH University of Science and Technology, Al. Mickiewicza 30,
30-059 Krakow, Poland (e-mails: {kijak.shia,pmartyna}@gmail.com,
{olekb,faber,kpietak,doroh}@agh.edu.pl).

parameters of neural networks, at the same time giving better

and better predictions [3].

Finally we have also considered immunological inspirations

in speeding-up the search for optimal neural network by

prematurely discarding non-promising ones [6], [8].

We have also approached classification on a similar basis

(modified PREMONN for ensemble creation) [4].

In this paper we would like to summarize the already

realized research, to present a recently implemented

collectively-intelligent prediction system and to discuss some

extensively planned and realized experimental results.

The concept of the system relies heavily on using neural

networks for prediction, leveraging their main advantage:

the ability to learn from examples and generalize acquired

knowledge to new cases in such a way that no explicit

problem-dependent knowledge is needed. A proper design of

neural network, may call for applying optimization techniques,

such as evolutionary optimization, as still the expert needs

to define network architecture, which should be suitable

for the given problem. This requires carrying out numerous

experiments, so it is a very time consuming job and can be

performed only by the specialists.

When using metaheuristics, and in particular evolutionary

computation on properly encoded network structure (the

genotype can contain the parameters of the network training,

not only its structure), the genotype is translated to phenotype

by constructing and training the network on available

data, checking the error measures. These parameters can

be optimized using any general-purpose algorithm, such

as evolutionary methods, including EMAS [9]. As EMAS

is a quite complex system, and the configuration of the

search has a significant number of degrees of freedom,

it will be wise to use a dedicated, flexible, component-

oriented framework to build the experimental environment.

An appropriate candidate for this is AgE (a component-

oriented computing framework developed at AGH University

of Science and Technology, devoted to supporting development

of population-based metaheuristics, i.a. agent-based ones),

especially the recently released ver. 3.0 [18].

In the state of the art, agent-based approaches are naturally

found in the cases when agent-based modelling of such

phenomena as evacuation or disease spread are considered

(see, e.g., [14]), based on such models of course certain

predictions can be made. Particular ensemble predictors were

also constructed and applied e.g. for weather forecasting [20],

but without predictor optimization like the one presented

in this paper (and a number of our previous work). Thus,

the presented approach combining collective intelligence,

prediction system and search for optimal parameters of the

predictors is unique according to our best knowledge and it

is hard to be compared to existing solutions. One possible

aspect to be compared is the prediction ability, however

this is not the main goal of the system—the main goal is

combined prediction and search for optimal predictor, thus

even a little bit worse results can be accepted, if leading to

better architecture found. Even if no better architecture for

particular neural network is found, the collective prediction

can still prevail.

In the next section the state of the art regarding EMAS

and EMAS-based prediction is shown, leading to discussion

of multi-agent optimization and prediction system. Later the

AgE 3.0 environment is sketched out, and a broad range of

experiments are shown and discussed.

II. NEURAL EMAS FOR TIME-SERIES PREDICTION

The configuration of the agents in a predicting MAS (kind

of specialization or method of cooperation) is often difficult

to specify. What is more, when dynamic changes of the

characteristics of the signal are possible, the configuration of

the agents should reflect these changes, automatically adapting

to the new characteristics. The mechanisms of evolution may

help to transform the whole population of agents (by means

of mutation and/or recombination) so as it fits best current

profile of the input signal (proper selection/reproduction) –

this evolutionary development of predicting MAS meets the

general idea of an evolutionary agent system (EMAS).

A. Evolutionary Multi-Agent Systems

Following neodarwinian paradigms, two main components

of the process of evolution are inheritance (with random

changes of genetic information by means of mutation and

recombination) and selection. They are realized by the

phenomena of death and reproduction, which may be easily

modeled as actions of death which results in the elimination of

the agent from the system, and reproduction which is simply

the production of a new agent from its parent(s) (see Fig. 1).

Selection is the most important and most difficult element

of the model of evolution employed in EMAS. This is

due to assumed lack of global knowledge (which makes

it impossible to evaluate all individuals at the same time)

and autonomy of agents (which causes reproduction to be

achieved asynchronously). The proposed principle of selection

corresponds to its natural prototype and is based on the

existence of non-renewable resource, called life energy. The

energy is gained and lost when the agent executes actions

in the environment. An increase in energy is a reward for

“good” behavior of the agent (e.g. attaining better solution

of a certain task), a decrease – a penalty for “bad” behavior

(which behavior is considered “good” or “bad” depends on

the particular problem to be solved). At the same time the

level of energy determines actions the agent is able to execute.

In particular, low energy level should increase possibility of

death and high energy level should increase possibility of

reproduction [9, and other].

B. Time series prediction fundamentals
Prediction (or forecasting) is a generation of information

about the possible future development of some process from

data about its past and present behaviour [13]. A predicting

system may be considered as a box with some input sequences,

and predictions of successive values of (some of) these

sequences as output. A neural network may be used as a

mechanism to model the characteristics of a signal in a system

for a time-series prediction [16]. The choice of a particular

architecture of the network is to a large extent determined by

a particular problem. Usually the next value of the series is

predicted on the basis of a fixed number of the previous ones.

Thus the number of input neurons correspond to the number

of values the prediction is based on, and the output neuron(s)

give prediction(s) of the next-to-come value(s) of the series.

The multi-layer perceptron (MLP) in should predict tn+1 value

Fig. 1. Structure of EMAS

of the series, basing on some previous values, which are given

on the inputs of the first layer. When tn+1 value is predicted,

the inputs are shifted, and the value tn+1 is given as the input

to the last neuron of the first layer.
A network may be supervisory trained, using the

comparison between values predicted and received as an error

measure.

C. Neural evolution in EMAS
In EMAS training of a neural network may be entrusted to

an agent while the search for a suitable network architecture

may be realized as the process of evolution occurring in the

whole population. To achieve this goal, each agent simply

possesses some vector of parameters, which describes the

configuration of its neural network. This vector plays role of

agent’s genotype, and as such may be modified by genetic

operators when inherited by its offspring. The evaluation of

agents is based on the quality of prediction obtained from a

trained network by means of gained/lost life energy.
One may notice that such system performs not only search

for the optimal neural network structure, but also exhibits

collective intelligence at the agent population level since

agents are able to cooperate and provide even better solutions

to the given problem.

D. A population of agents as a dynamic modular neural
network

In the above-described system every agent contains a neural

network, which acts as a computational model for the given

(prediction) problem (see Fig. 2). Entrusting the task of solving

the problem to the complex system, one may expect to obtain

more accurate answers. This is similar to the approach of

modular neural networks such as the model of PREMONN.

PREMONN is a group (team) of neural networks, which solve

the same problem, and their responses are combined together

to yield the final result [17].
Applying PREMONN algorithm, every prediction of the

given time-series may be assigned a certain probability, which

can be used to determine the answer of the whole group

of predicting individuals. After every prediction step, every

individual based on its predictions and errors:

ykt = fK(yt−1, yt−2, . . . , yt−M)

ekt = yt − ŷkt

computes its credit function:

pkt =
pkt−1 · e−

|ekt |2
2σ2

∑K
n=1 p

n
t−1 · e−

|ekt |2
2σ2

Based on this function the response of the group of individuals

can be a weighted combination of the answers or even can be

the result of the winner-take-all combination:

1) Weighted combination:

ŷt =

K∑

k=1

pkt−1y
k
t

2) Winner-take-all combination:

ŷt = yẑt , where ẑt = arg maxk=1,2,...,K pkt−1

Using the above-mentioned approach a group of agents can

produce the answer, which will be more accurate than the

prediction of one arbitrarily chosen agent, as it comes from

the group of agents using at least simple voting, or a more

sophisticated bayesian stochastic scheme.

The system constructed in this way is also adaptive –

its adaptation abilities base on its stochastic features. The

probabilities of correct answers of agents are dynamically

changed by the gating expert, so in the group of the agents, the

answer of the whole group as the (somehow) weighted answer

of every agent, is reliable, and the agents which produce

worse answers should be replaced with new agents, in this

way, globally, the system can adapt to the new features of the

environment.

E. Evolving collective intelligence of agent populations
In such a complex organisation of agents, which was

described above as a dynamically changing predictive modular

neural network, it will be very difficult to determine correct

values of additional parameters, which describe particular

mechanisms of interaction. In order to improve the process of

refining of such an organisation evolutionary processes may

be also used (meta-evolution).

In an EMAS evolution is usually realized at the level

of individual agent actions [7] (as each of them contains a

chromosome which can be recombined, mutated, inherited

etc.). At the same time perceiving the whole system as a

group of modular neural networks (groups of agents, every

Fig. 2. Overview of implemented system

Fig. 3. AgE 3.0 architecture. Gray rectangles show cluster nodes. Each node is executing the EMAS module and each one has two local workplaces.
Workplaces together create a single EMAS environment. Each workplace contains its own subpopulation of agents.

group can be perceived as a single being), it seems natural

to propose the way of evolving such „complex beings”. Every

modular network must have its own parameters, characterising

its behavior, such as parameters of credit function, and the

parameters defining the way of evolving individual agents

(amount of rewards and punishments [7]), which can be a

subject of the evolution process.

Such two-level evolution may lead to automatic

determination of the system parameters, making it more

reliable and adaptive to the changes of the work conditions

(e.g. in time-series prediction, to the changes of the time-series

to be predicted).

III. OPTIMIZATION OF NEURAL NETWORKS IN

AGENT-BASED ENVIRONMENT

Optimization and simulation tasks requiring significant

computation power are usually realized using dedicated

software environments. Let us focus for a moment on agent-

oriented ones [1], like REPAST HPC [11], FLAME [10],

PDES-MAS [19] or Pandora framework [21] that are devoted

mostly for simulation purposes. A renown framework for

computing purposes, also HPC enabled is Paradiseo [15].

All the mentioned platforms use quite standard technologies

and languages (like MPI, C++, Java), which make possible

development by anyone, but does not to a great extend ease

the process of creation the software itself. Moreover, it would

be desirable to leverage certain flexibility, extensibility and

reusability mechanisms (like software components, or at least

Dependency Injection/Inversion of Control design pattern).

Thus we have usually a very good performance, but steep

learning curve and little flexibility. This situation created an

opportunity to develop novel, dedicated solutions leveraging

contemporary, high-level languages and technologies that

would ease the development, debugging, deploying and

modification process. Therefore in order to be able to utilize

a flexible and extensible environment, instead of using the

existing ones we have been developing our own solution for

about 15 years, namely AgE.

A. Agent-based Environment – AgE 3.0
AgE1 is a distributed computational platform written in

Java, and designed for agent-based computational systems.

Its third version provides a more modern, lightweight and

1Project home pagehttps://age.agh.edu.pl/

flexible architecture than previous ones. At the bottom, so-

called core layer, AgE manages communication, fail-tolerance

and other services required by a distributed environment. This

layer heavily depends on Hazelcast2 technology. The core
layer provides utilities needed to built computational modules

that are easily scalable and can hide the distributed nature of

the software from the end user.

The most important example of the computational module

implementation is the multi-agent framework and EMAS

library provided with it. Figure 3 shows the architecture of

a sample experiment running.

EMAS in AgE 3 is implemented in a functional-like form

and uses a stream-based processing where agents are entities

passing through a stream. An experiment is defined in terms

of stages of a pipeline. A pipeline is similar in style to

streams known, for example, from the Java language. A user

defines pipeline within a step that describes one iteration of

an algorithm. A step is then passed to a workplace that is a

container for a population of agents. It is possible to create

multiple workplaces and they can have different configuration

and steps, if needed. Agents located in different workplaces

are independent in terms of their interactions. The only way

for an agent to have interaction with a different workplace

is to migrate to it from its current one. In algorithmic terms,

workplaces are separate islands with subpopulations.

A user can define the following stages of a pipeline that

correspond to the EMAS actions:

• selection,

• reproduction,

• fight,

• evaluation,

• mutation,

• migration,

• death.

All of these stages are implemented as functions with the

number of parameters and return values dependent on a stage.

It is also possible to pass any other function to execute at any

point of the pipeline.

AgE already provides several ready-to-use operators that

can be used with EMAS but the user can define new ones

when defining the step. As operators are simply functions,

they can be defined inline.

2https://hazelcast.org/

Both an instance of EMAS experiment and AgE nodes

can be configured in two ways: using static XML files or

with dynamic JavaScript-based script files. Both approaches

have their advantages, but the latter makes it possible to

generate more dynamic and differentiated configurations for

experiments.

B. Implementation of neural based prediction system with
AgE 3.0

AgE platform can be used to implement a neural based

prediction system in which agent’s genotype refers to the

parameters of the neural network. Usage of EMAS allows to

find better parameters of the neural network, which results

in more precise predictions afterwards. The neural network

used for prediction is a multilayer perceptron with two hidden

layers. Required functionality was provided by a use of

popular Java library deeplearning4j.
To adjust the system to the problem we had to define a

proper solution, which contains the genotype and the neural

network itself. To perform an experiment it was needed to

create a set of stages which were used on a population pipeline.
We used predefined stages like selection, fight, migration

and death, but we had to provide the rest to meet the needs of a

given problem. To deliver the missing stages we implemented

specified interfaces. We created our own recombination with

mutation and evaluation. As a recombination we used uniform

crossover, as a mutation we decided to use random gene

mutation. The evaluation stage calculated the fitness of each

agent from the population based on their prediction result.

In addition, we defined a new stage - learning phase, which

purpose was to train neural networks of agents. Moreover, we

provided the sequencer which responsibilities were to deliver

the data set at each step and also to indicate expected value

of the function.
In the after step we defined a new task to gather all

populations and extract the results from the whole system.

As a strategy for extracting the result from the whole system,

PREMONN algorithm was used. The overall prediction result

is calculated based on the predictions of populations and then

persisted to the result file. At the end we had to prepare

configuration file in which we defined the components and

parameters to be used.

IV. EXPERIMENTAL RESULTS

We carried out some experiments in which we tested

Mackey-Glass time series prediction. Each of the experiments

was performed 10 times. The plots present an average of

measured results for each experiment.
Every agent from initial population has a genotype based on

values randomly chosen from defined ranges. This genotype

corresponds to the neural network parameters like:

1) learning rate,

2) momentum,

3) drop out,

4) number of neurons in first hidden layer,

5) number of neurons in second hidden layer.

After agent is created his neural network is initialized with

proper parameters specified by the genotype. Example values

ranges for agent’s genotype are presented in Table I.

TABLE I
SAMPLE GENOTYPE VALUE RANGES

From To
Learning rate 0.01 0.10
Momentum 0.80 0.95
Drop Out 0.10 0.40

Neurons Number 32 256

Table II presents default configuration which was used in

the experiments. Configuration was slightly different for each

experiment and changes will be described in corresponding

subsections.

TABLE II
DEFAULT CONFIGURATION PARAMETERS

Number of workplaces 2
Number of training dataset in each step 50

Starting population size 50
Required energy for reproduction 75

Agent initial energy 30
Fight energy transfer 5

Reproduction energy transfer 25%
Recombination type Uniform crossover

Mutation type Random gen mutation
Number of repetitions 10

The Mackey-Glass equation was used to calculate the

expected value:

dx

dt
= β

xτ

1 + xn
τ

− γx, γ, β, n > 0

where β, γ, τ, n are real numbers and xτ represents the value

of the variable x at time (t − τ). Parameters of the equation

were different in each experiment.

A. Experiment 1

The parameters of the time series for the first experiment

are as follows: β = 0.2, γ = 0.1, τ = 50, n = 10.

Obtained optimal network parameters are as follows:

Learning rate = 0.043, Momentum = 0.881, Drop out = 0.297,

Neurons in first hidden layer = 112, Neurons in second hidden

layer = 145.

As we can observe in the first steps error rate of the whole

system is decreasing to the acceptable level. Afterwards, there

are some peaks which are caused by creation of new agents

whose neural networks are not trained yet or by the fact the

function is more complicated in that point. We can also notice

that the number of neurons in the individual layers start to

oscillate between different value ranges.

B. Experiment 2

The parameters for this experiment are as follows β = 0.5,

γ = 0.25, τ = 40, n = 10.

Obtained optimal network parameters are as follows:

Learning rate = 0.051, Momentum = 0.881, Drop out = 0.314,

Neurons in first hidden layer = 110, Neurons in second hidden

layer = 162.

At the beginning the error rate is decreasing to the

appropriate level and we can notice same peaks as before.

The overall error rate of the whole system is bigger than the

one before because the function has smaller time period and

is more complicated. Still we can observe some trends like

splitting value ranges of neuron numbers in neural networks’

layers.

C. Experiment 3

The parameters for this experiment are as follows: β = 2.0,

γ = 1.0, τ = 10, n = 10.

The obtained optimal network parameters are as follows:

Learning rate = 0.063, Momentum = 0.876, Drop out = 0.209,

Neurons in first hidden layer = 94, Neurons in second hidden

layer = 132.

This was the most difficult function we have measured. The

system cannot properly predict values of the Mackey Glass

time series. The error rate of the whole system is almost the

same through the whole experiment. It is difficult to notice

any big changes of the genotype values trend.

D. Experiment 4

The parameters for this experiment are as follows: β = 1.0,

γ = 0.5, τ = 30, n = 10.

The obtained optimal network parameters are as follows:

Learning rate = 0.058, Momentum = 0.9, Drop out = 0.31,

Neurons in first hidden layer = 132, Neurons in second hidden

layer = 147.

In this part of experiment we did not use PREMONN

algorithm to get the overall result from the system. Instead

of that we decided to choose different strategy like taking the

average result of 10% of the best agents in whole population.

The obtained optimal network parameters are as follows:

Learning rate = 0.061, Momentum = 0.91, Drop out = 0.28,

Neurons in first hidden layer = 123, Neurons in second hidden

layer = 192.

Finally, we decided to check how the system behaves when

the result is determined only by the best agent in the current

step.

Obtained optimal network parameters are as follows:

Learning rate = 0.073, Momentum = 0.901, Drop out = 0.332,

Neurons in first hidden layer = 122, Neurons in second hidden

layer = 177.

The strategy of extracting result from the system will have

only effect on the error rate of the whole system. As we can

see the 10% of the best neural network is slightly better then

the PREMONN strategy.

E. Experiment 5

The parameters for this experiment are as follows: β = 1.0,

γ = 0.5, τ = 30, n = 10.

In this one we can observe how the system reacts when

the training phase is stopped after passing the the first half of

steps measured in the experiment.

The obtained optimal network parameters are as follows:

Learning rate = 0.053, Momentum = 0.89, Drop out = 0.294,

Neurons in first hidden layer = 130, Neurons in second hidden

layer = 185.

As we can notice the overall error rates are peaking high

after stopping the learning process. The reason of that is the

death of the agents whose neural networks have been trained.

Another important fact is that new genotypes will be always

worse than those whose the neural networks were trained.

F. Experiment 6

The parameters for this experiment are as follows: β = 1.0,

γ = 0.5, τ = 30, n = 10.

In the next three parts of experiments we wanted to check

how the system behaves when the amount of energy transfer

will change. We used following values: 3, 10 and 15.

The obtained optimal network parameters are as follows:

Learning rate = 0.075, Momentum = 0.9, Drop out = 0.321,

Neurons in first hidden layer = 111, Neurons in second hidden

layer = 123.

The obtained optimal network parameters are as follows:

Learning rate = 0.042, Momentum = 0.87, Drop out = 0.325,

Neurons in first hidden layer = 113, Neurons in second hidden

layer = 182.

The obtained optimal network parameters are as follows:

Learning rate = 0.065, Momentum = 0.907, Drop out = 0.310,

Neurons in first hidden layer = 168, Neurons in second hidden

layer = 193.

The conclusions we can draw are that the lower the

energy transfer is the lower the system error rate is. If the

energy transfer is low the population is not changing so fast.

Moreover, agents have more time to train their networks.

The disadvantage of low energy transfer is that the speed

of searching for optimal genotype is rather small. When the

energy transfer is high the total life time of the agents is

shorter. We are searching for optimum result faster but the

chance to drop into local minimum of function is also bigger.

To achieve some kind of balance we should also increase the

amount of the migrations between workplaces.

V. CONCLUSIONS

In the paper a summary of our work on Collective Intelligent

Predicting Neural Networks was presented. Besides recalling

our earlier works, we have prepared a novel implementation of

the whole system using the AgE 3.0 software environment and

we have run a broadly-planned series of experiments focusing

on predicting the Mackey-Glass time series.

Observing the actual outcomes of the evolution process

for different instances of the test problem, we have realized

that different values of the genotype were generated as

optimal ones. Thus the capability of collective prediction and

adaptation to particular problem to be solved of the whole

system was presented.

The presented paper can be used as a reference for the

researchers wanting to construct similar systems—ensembles

of predictors or classifiers focused also on optimization of the

parameters of their basic units (like predicting neural networks

in the described case).

Evolution of a neural network is a time-consuming job

because of a complex fitness function evaluation including

construction and training of the evaluated network. In this

paper we summarize our work connected with optimization

of an universal approximator—Multi Layered Perceptron, and

these results may be used as a reference for anybody interested

in such collective-intelligent predicting. In the future we will

focus on a broader selection of neural network architectures,

e.g. LSTM.

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 4. Result plots from Experiment 1

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 5. Result plots from Experiment 2

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 6. Result plots from Experiment 3

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 7. Result plots from Experiment 4

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 8. Result plots from Experiment 4 with the average result of 10% of best agents

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 9. Result plots from Experiment 4 with the best agent

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 10. Result plots from Experiment 5

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 11. Result plots from Experiment 6 with energy transfer at level 3

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 12. Result plots from Experiment 6 with energy transfer at level 10

Prediction error rate in every step. Network parameters for best agent in every step.

Number of neurons for best agent in every step. Real value and predicted value in every step.

Fig. 13. Result plots from Experiment 6 with energy transfer at level 15

ACKNOWLEDGMENT

The research presented in this paper was supported by the

AGH University of Science and Technology Statutory Project.

REFERENCES

[1] S. Abar, G.K. Theodoropoulos, P.Lemarinier, and G.M.P. O’Hare. Agent
based modelling and simulation tools: A review of the state-of-art
software. Computer Science Review, pages –, 2017.

[2] A. Byrski. Evolutionary search for optimal parameters of predicting
neural networks. In Mat. Warsztatów Naukowych Algorytmy Ewolucyjne
i Optymalizacja Globalna (KAEiOG 2002) oraz Konferencji Systemy
Rozmyte (KSR 2002). Politechnika Warszawska, Wydział Elektroniki
i Technik Informacyjnych, 2002.

[3] A. Byrski and J. Bałamut. Evolutionary neural networks in collective
intelligent predicting system. In L. Rutkowski, editor, Seventh
International Conference on Artificial Intelligence and Soft Computing.
Springer Verlag, 2004.

[4] A. Byrski, J. Dobrowolski, and K. Tobola. Prace Naukowe, pages 59–65,
2008.

[5] A. Byrski and M. Kisiel-Dorohinicki. Evolving rbf networks in a multi-
agent system. Neural Network World, 12(2):440, 2002.

[6] A. Byrski and M. Kisiel-Dorohinicki. Immune-based optimization of
predicting neural networks. In V.S. Sunderam, G. Dick van Albada,
Peter M. A. Sloot, and J.J. Dongarra, editors, Computational Science -
ICCS 2005, 5th International Conference, Atlanta, GA, USA, May 22-25,
2005, Proceedings, Part III, volume 3516 of Lecture Notes in Computer
Science, pages 703–710. Springer, 2005.

[7] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Agent-based
evolution of neural network architecture. In M. Hamza, editor, Proc.
of the IASTED Int. Symp.: Applied Informatics. IASTED/ACTA Press,
2002.

[8] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Immunological
selection in agent-based optimization of neural network parameters.
In K. Wegrzyn-Wolska and P.S. Szczepaniak, editors, Advances in
Intelligent Web Mastering, Proceedings of the 5th Atlantic Web
Intelligence Conference - AWIC 2007, Fontainebleau, France, June 25
- 27, 2007, volume 43 of Advances in Soft Computing, pages 62–67.
Springer, 2007.

[9] K. Cetnarowicz, M. Kisiel-Dorohinicki, and E. Nawarecki. The
application of evolution process in multi-agent world (MAW) to the
prediction system. In M. Tokoro, editor, Proc. of the 2nd Int. Conf. on
Multi-Agent Systems (ICMAS’96). AAAI Press, 1996.

[10] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and
C. Greenough. Exploitation of high performance computing in the flame
agent-based simulation framework. In 2012 IEEE 14th International
Conference on High Performance Computing and Communication 2012
IEEE 9th International Conference on Embedded Software and Systems,
pages 538–545, June 2012.

[11] N. Collier and M. North. Parallel agent-based simulation with repast for
high performance computing. SIMULATION, 89(10):1215–1235, 2013.

[12] S. Haykin. Neural Networks and Learning Machines. Pearson, 2008.
[13] N.K. Kasabov. Foundations of Neural Networks, Fuzzy Systems, and

Knowledge Engineering. The MIT Press, 1996.
[14] K.E. Lane-deGraaf, R.C. Kennedy, S.N. Arifin, G.R. Madey, A. Fuentes,

and H. Hollocher.
[15] A. Liefooghe, L. Jourdan, and E.-G. Talbi. Technical report.
[16] T. Masters. Neural, Novel and Hybrid Algorithms for Time Series

Prediction. John Wiley and Sons, 1995.
[17] V. Petridis and A. Kehagias. Predictive Modular Neural Networks –

Application to Time Series. Kluwer Academic Publishers, 1998.
[18] K. Pietak and M. Kisiel-Dorohinicki. Agent-based framework

facilitating component-based implementation of distributed
computational intelligence systems. In Ngoc-Thanh Nguyen,
Joanna Kołodziej, Tadeusz Burczyński, and Marenglen Biba, editors,
Transactions on Computational Collective Intelligence X, pages 31–44,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[19] V. Suryanarayanan, G. Theodoropoulos, and M. Lees. Pdes-mas:
Distributed simulation of multi-agent systems. Procedia Computer
Science, 18:671 – 681, 2013.

[20] Z. Toth and E. Kalnay. Ensemble forecasting at ncep and the breeding
method. Monthly Weather Review, 125(12):3297–3319.

[21] P. Wittek and X. Rubio-Campillo. Scalable agent-based modelling with
cloud hpc resources for social simulations. In 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings,
pages 355–362, Dec 2012.

Joanna Kijak obtained B.Eng. in 2017, she is
currently a student at AGH University of Science and
Technology in Krakow, Poland, pursuing a Master
Degree in computer science. Interested in neural
networks.

Piotr Martyna obtained B.Eng. in 2017, he is
currently a student at AGH University of Science and
Technology in Krakow, Poland, pursuing a Master
Degree in computer science. Interested in cloud
computing and distributed systems.

Aleksander Byrski obtanied Ph.D. in 2007 and
D.Sc in 2013, he works at AGH University of
Science and Technology in Krakow, Poland, he is
interested in nature-inspired computing and agent-
based simulation.

Łukasz Faber obtained M.Sc. in 2012 at AGH
University of Science and Technology in Krakow,
Poland and he is currently a Ph.D. student at the
Department of Computer Science of AGH-UST. His
research interests include agent based modeling and
distributed systems.

Kamil Piętak obtained Ph.D. in 2017, works at
AGH University of Science and Technology in
Krakow, Poland, he is interested in heterogeneous
computing, distributed and parallel HPC and
component-based systems.

Marek Kisiel-Dorohinicki obtained Ph.D. in 2001
and D.Sc. in 2013, works at AGH University of
Science and Technology in Krakow, Poland, he
is interested in agent-based systems, parallel and
distributed computing and simulation.

