PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Hydraulic Retention Time and Filling Time on Simultaneous Biodegradation of Phenol, Resorcinol and Catechol in a Sequencing Batch Reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present study, treatment of synthetic wastewater containing phenol, resorcinol and catechol was studied in a sequencing batch reactor (SBR). Parameters such as hydraulic retention time (HRT) and filling time have been optimized to increase the phenol, resorcinol, catechol and chemical oxygen demand (COD) removal efficiencies. More than 99% phenol, 95% resorcinol and 96% catechol and 89% COD removal efficiency was obtained at optimum conditions of HRT = 1.25 d and fill time = 1.5 h. The heating value of the sludge was found to be 12 MJ/kg. The sludge can be combusted to recover its energy value.
Rocznik
Strony
69--80
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee Roorkee-247667, Uttarakhand, India
autor
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee Roorkee-247667, Uttarakhand, India
  • Department of Chemical Engineering, Indian Institute of Technology Roorkee Roorkee-247667, Uttarakhand, India
Bibliografia
  • [1] Orhon, D., & Babuna, F.G. (2009). Industrial wastewater treatment by activated sludge, IWA Publishing, London 2009.
  • [2] Mall, I.D. (2007). Petrochemical process technology, Macmillan, New Delhi 2007.
  • [3] CPCB. Pollution Control Acts, Rules and Notifications Issued There Under. Central Pollution Control Board. Ministry of Environment and Forests, Delhi, India 2006.
  • [4] Edalatmanesh, M., Mehrvar, M., & Dhib, R. (2008). Optimization of phenol degradation in a combined photochemical-biological wastewater treatment system, Chemical Engineering Research & Design, 86 (11), 1243-1252.
  • [5] Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., & Mishra, I.M. (2006). Adsorptive Removal of Phenol by Bagasse fly ash and Activated Carbon: equilibrium, kinetics and thermodynamic study, Colloids Surface A. Physicochemical & Engineering Aspects, 27, 289-104.
  • [6] Srivastava, V.C., Prasad, B., Mishra, I.M., Mall, I.D., & Swamy, M.M. (2008). Prediction of breakthrough curves for sorptive removal of phenol by bagasse fly ash packed bed, Industrial & Engineering ChemistryResearch, 47, 1603-1613.
  • [7] Suresh, S., Srivastava, V.C., Mishra, I.M. (2011). Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon, Chemical Engineering Journal, 171, 997−1003.
  • [8] Suresh, S., Srivastava, V.C., & Mishra, I.M. (2011). Isotherm, thermodynamics, desorption and disposal study for the adsorption of catechol and resorcinol onto granular activated carbon, Journal of Chemical &Engineering Data, 56 (4), 811-818.
  • [9] Suresh, S., Srivastava, V.C., & Mishra, I.M. (2011). Study of catechol and resorcinol adsorption mechanism through granular activated carbon characterization, pH and kinetic study, Separation Science& Technology, 46, 1750-1766.
  • [10] Tomei, M.C., Annesini, M.C., & Bussoletti, S. (2004). 4-nitrophenol biodegradation in a sequencing batch reactor: kinetic study and effect of filling time, Water Resources, 38, 375-384.
  • [11] Silva, M.R., Coelho, M.A.Z., & Araujo, O.Q.F. (2002). Minimization of phenol and ammonical nitrogen in refinery wastewater employing biological treatment, Engenharia Termica, Ediçao Especial, 33−37.
  • [12] Barrios-Martinez, A., Barbot, E., Marrot, B., Moulin, P., & Roche, N. (2006). Degradation of synthetic phenol-containing wastewaters by MBR, Journal of Membrane Science, 281, 288-296.
  • [13] Tsang, Y.F., Hua, F.L., Chua, H., Sin, S.N., & Wang, Y.J. (2007). Optimization of biological treatment of paper mill effluent in a sequencing batch reactor, Biochemical Engineering Journal, 34, 193-199.
  • [14] Wilderer, P.A., Irvine, R.L., & Mervyn, C. (2001). Sequencing Batch Reactor Technology, IWA Publishing, London 2001.
  • [15] Uygur, A., Kargi, F. (2004). Phenol inhibition of biological nutrient removal in a four-step sequencing batch reactor, Process Biochemistry, 39, 2123-2128.
  • [16] Sarfaraz, S., Thomas, S., Tewari, U.K., & Iyengar, L. (2004). Anoxic treatment of phenolic wastewater in sequencing batch reactor, Water Resources, 38, 965-971.
  • [17] Wang, S.G., Liu, X.W., Zhang, H.Y., Gong, W.X., Sun, X.F., & Gao, B.Y. (2007). Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor, Chemosphere, 69, 769-775.
  • [18] Chan, C.H., & Lim, P.E. (2003). Evaluation of sequencing batch reactor performance with aerated and unaerated FILL periods in treating phenol-containing wastewater, Bioresource Technology, 98, 1333-1338.
  • [19] Tomei, M.C., Annesini, M.C., Luberti, R., Cento, G., & Senia, A. (2003). Kinetics of 4 nitrophenol biodegradation in a sequencing batch reactor, Water Research, 37, 3803-3814.
  • [20] Chiavola, A., Baciocchi, R., & Gavasc, R. (2010). Biological treatment of PAH-contaminated sediments in a Sequencing Batch Reactor., Journal of Hazardous Materials, 184, 97-104.
  • [21] Monsalvo, V.M., Mohedano, A.F., Casas, J.A., & Rodriguez, J.J. (2009). Cometabolic biodegradation of 4-chlorophenol by sequencing batch reactors at different temperatures, Bioresource Technology, 100, 4572-4578.
  • [22] Papadimitriou, C.A., Samaras, P., & Sakellaropoulos, G.P. (2009). Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors, Bioresource Technology, 100, 31-37.
  • [23] Moussavi, G., Barikbin, B., & Mahmoudi, M. (2010). The removal of high concentrations of phenol from saline wastewater using aerobic granular SBR, Chemical Engineering Journal, 158, 498-504.
  • [24] Tomei, M.C., & Annesini, M.C. (2008). Biodegradation of Phenolic Mixtures in a Sequencing Batch Reactor A kinetic study, Environmental Science and Pollution Research, 15 (3), 188-195.
  • [25] Farooqi, I.H., Basheer, F., & Ahmad, T. (2008). Studies on biodegradation of phenols and m-cresols by upflow anaerobic sludge blanket and aerobic sequential batch reactor, Global Nest Journal, 10, 39−46.
  • [26] Yoong, E.T., Lant, P.A., & Greenfield, P.F. (2000). In situ respirometry in an SBR treating wastewater with high phenol concentrations, Water Recourses, 34, 239-245.
  • [27] Rajani, R.M., Sreekanth, D., & Himabindu, V. (2011). Degradation of mixture of phenolic compounds by activated sludge processes using mixed consortia, www.IJEE.IEEFoundation.org., 2, 151-160.
  • [28] Yu, H.Q., & Gu, G.W. (1996). Treatment of phenolic wastewater by sequencing batch reactors with aerated and unaerated fills, Waste Management, 16, 561-566.
  • [29] Sahinkaya, E., & Dilek, F.B. (2007). Effect of feeding time on the performance of a sequencing batch reactor treating a mixture of 4-CP and 2,4-DCP, Journal of Environment Management, 83, 427-436.
  • [30] Sharma, V., Srivastava, V.C., Kushwaha, J.P., & Mall, I.D. (2010). Studies on biodegradation of resorcinol in sequential batch reactor, International Biodeterioration & Biodegradation, 64, 764-768.
  • [31] Samantha, C., Suzana, M., Jose, A., Rodrigues, D., Eugenio, F., & Marcelo, Z. (2005). Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring, Bioresource Technology, 96, 517-519.
  • [32] APHA. Standard Methods for the Examination of Water and Wastewater (19th ed.), American Public Health Association, Washington, DC (1995).
  • [33] Puri, B.R., & Walker, P.L. (1966). Chemistry and physics of carbon, New York: Marcel Dekker 1966.
  • [34] Ng, J.C.Y., Cheung, W.H., & McKay, G. (2002). Equilibrium Studies of the Sorption of Cu(II) Ions Chitosan, Journal of Colloid and Interface Science, 64, 255−266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-313a39d6-c8cb-4569-9d5e-3266036b7d65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.