PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of waste ashes from biomass combustion on frost resistance of cement mortars

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the influence of ashes generated in the combustion processes of various types of biomasses on the durability (resistance to freezing and thawing after 25 cycles) of cement mortars. Three types of ashes were used for the tests: two fly ashes and one bottom ash. These differ in chemical composition and microstructure in the amounts of 10%, 20%, and 30% of the cement mass and are used as a substitute for standard sand. The ashes are characterized in terms of microstructure and chemical composition. The research shows that, regardless of the type of ash used, all the cement mortars containing ash are characterized by higher durability than the control mortars. Among the modified mortars, the smallest decrease in resistance (by 0.54%) to the process of freezing and thawing is shown by cement mortars containing 10% fly ash from the combustion process of biomass with the addition of sunflower, and the largest (by 7.56%) show mortars containing 30% bottom ash from the combustion of biomass with the addition of sunflower. These findings suggest that the incorporation of biomass ashes, particularly fly ash, into the cement matrix mixes has the potential to improve their durability for road infrastructure applications.
Słowa kluczowe
Rocznik
Strony
35--41
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Czestochowa University of Technology, Faculty of Civil Engineering 3 Akademicka St., 42-201 Czestochowa, Poland
Bibliografia
  • 1. Blissett, R.S. & Rowson, N.A. (2012) A review of the multi-component utilization of coal fly ash. Fuel 97, pp. 1–23, doi: 10.1016/j.fuel.2012.03.024.
  • 2. Bogas, J.A., Carriço, A. & Real, S. (2022) Durability of concrete produced with recycled cement from waste concrete. Materials Today: Proceedings 58, pp. 1149–1154, doi: 10.1016/j.matpr.2022.01.280.
  • 3. Deja, A., Dzhuguryan, T., Dzhuguryan, L., Konradi, O. & Ulewicz, R. (2021) Smart sustainable city manufacturing and logistics: A framework for city logistics node 4.0 operations. Energies 14, 8380, doi: 10.3390/en14248380.
  • 4. Gabrijel, I., Skazlić, M. & Štirmer, N. (2022) Long-term behavior of concrete containing wood biomass fly ash. Applied Sciences 12(24), 12859, doi: 10.3390/app122412859.
  • 5. Gavardashvili, G. & Vartanov, M. (2023) Engineering and technical structures of the Zhinvali hydroengineering complex and assessment of the state of their management. Production Engineering Archives 29(1), pp. 37–43, doi: 10.30657/pea.2023.29.6.
  • 6. Hlushchenko, R., Tkachenko, T., Mileikovskyi, V., Kravets, V. & Tkachenko, O. (2022) “Green structures” for effective rainwater management on roads. Production Engineering Archives 28(4), pp. 295–299, doi: 10.30657/ pea.2022.28.37.
  • 7. Hunyak, O., Sobol, K., Markiv, T. & Bidos, V. (2019) The effect of natural pozzolans on properties of vibropressed interlocking concrete blocks in different curing conditions. Production Engineering Archives 22(22), pp. 3–6, doi: 10.30657/pea.2019.22.01.
  • 8. Jeleniewicz, K., Rutkowska, G., Żółtowski, M. & Kula D. (2023) Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 73 (145), pp. 46–53, doi: 10.17402/554.
  • 9. Johnson, A., Catalan, L.J.J. & Kinrade, S.D. (2010) Characterization and evaluation of fly-ash from co-combustion of lignite and wood pellets for use as cement admixture. Fuel 89(10), pp. 3042–3050, doi: 10.1016/j.fuel.2010.05.027.
  • 10. Jura, J. (2020) Influence of type of biomass burned on the properties of cement mortar containing fly ash. Construction of Optimized Energy Potential 9(1), pp. 77–82, doi: 10.17512/bozpe.2020.1.09.
  • 11. Jura, J. & Ulewicz, M. (2021) Assessment of the possibility of using fly ash from biomass combustion for concrete. Materials 14(21), 6708, doi: 10.3390/ma14216708.
  • 12. Kalak, T., Szypura, P., Cierpiszewski, R. & Ulewicz, M. (2023) Modification of concrete composition doped by sewage sludge fly ash and its effect on compressive strength. Materials 16(11), 4043, doi: 10.3390/ma16114043.
  • 13. Khan, K., Ullah, M.F., Shahzada, K., Amin, M.N., Bibi, T., Wahab, N. & Aljaafari, A. (2020) Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Construction and Building Materials 258, 119589, doi: 10.1016/j. conbuildmat.2020.119589.
  • 14. Kosior-Kazberuk, M. (2013) Surface scaling resistance of concrete with fly ash from co-combustion of coal and biomass. Procedia Engineering 57, pp. 605–613, doi: 10.1016/ j.proeng.2013.04.077.
  • 15. Li, G., Zhao, X., Wang, P. & Liu, X. (2006) Behaviour of concrete-filled steel tubular columns incorporating fly ash. Cement and Concrete Composites 28(2), pp. 189–196, doi: 10.1016/j.cemconcomp.2005.10.005.
  • 16. Lis, T. & Nowacki, K. (2022) Pro-ecological possibilities of using metallurgical waste in the production of aggregates. Production Engineering Archives 28(3), pp. 252–256, doi: 10.30657/pea.2022.28.31.
  • 17. Mohit, M. & Sharifi, Y. (2019) Ceramic waste powder as alternative mortar-based cementitious materials. ACI Materials Journal 116, doi: 10.14359/51716819.
  • 18. Nagrockienè, D. & Daugèla, A. (2018) Investigation into the properties of concrete modified with biomass combustion fly ash. Construction and Building Materials 174, pp. 369–375, doi: 10.1016/j.conbuildmat.2018.04.125.
  • 19. Nayana, A.M. & Rakesh, P. (2018) Strength and durability study on cement mortar with ceramic waste and micro-silica. Materials Today: Proceedings 5(11), pp. 24780–24791, doi: 10.1016/j.matpr.2018.10.276.
  • 20. Nedeliaková, E., Hranický, M. & Valla, M. (2022) Risk identification methodology regarding the safety and quality of railway services. Production Engineering Archives 28(1), pp. 21-29, doi: 10.30657/pea.2022.28.03.
  • 21. Omran, A., Soliman, N., Xie, A., Davidenko, T. & TagnitHamou, A. (2018) Field trials with concrete incorporating biomass-fly ash. Construction and Building Materials 186, pp. 660–669, doi: 10.1016/j.conbuildmat.2018.07.084.
  • 22. Pietrzak, A. (2018) Assessment of the impact of recycling from pet bottles in selected concrete properties. Construction of Optimized Energy Potential 7(1), pp. 51–56, doi: 10.17512/bozpe.2018.1.07.
  • 23. Pietrzak, A. (2019) The effect of ashes generated from the combustion of sewage sludge on the basic mechanical properties of concrete. Construction of Optimized Energy Potential 8(1), pp. 29–35, doi: 10.17512/bozpe.2019.1.03.
  • 24. Pietrzak, A. & Ulewicz, M. (2023) Influence of post-consumer waste thermoplastic elastomers obtained from used car floor mats on concrete properties. Materials 16(6), doi: 10.3390/ma16062231.
  • 25. PN-B-04500:1985. Zaprawy budowlane – Badania cech fizycznych i wytrzymałościowych.
  • 26. PN-B-19707:2013-10. Cement – Cement specjalny – Skład, wymagania i kryteria zgodności.
  • 27. PN-EN 196-1:2016. Metody badania cementu – Część 1: Oznaczanie wytrzymałości.
  • 28. PN-EN-197-1:2012. Cement – Część 1: Skład, wymagania i kryteria zgodności dotyczące cementów powszechnego użytku.
  • 29. PN-EN-14216:2015-09. Cement – Skład, wymagania i kryteria zgodności dotyczące cementów specjalnych o bardzo niskim cieple hydratacji.
  • 30. PN-EN 206. Beton – Wymagania, właściwości użytkowe, produkcja i zgodność.
  • 31. PN-EN 450-1:2012. Popiół lotny do betonu – Część 1: Definicje, specyfikacje i kryteria zgodności.
  • 32. Popczyk, M. (2022) Possibilities of recovery of fine-fraction energy waste from fluidized bed boilers in underground mining for liquidation of underground workings. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 72 (144), pp. 133–140, doi: 10.17402/542.
  • 33. Rutkowska, G. & Żółtowski, M. (2022) Fly ash from thermal transformation of sewage sludge as an alternative additive to concrete resistant to environmental influences. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 71 (143), pp. 48–55, doi: 10.17402/517.
  • 34. Skoczylas, K. & Rucińska, T. (2018) Strength and durability of cement mortars containing nanosilica and waste glass fine aggregate. Cement Lime Concrete 21, pp. 206–215.
  • 35. Teixeira, E.R., Camões, A. & Branco, F.G. (2022) Synergetic effect of biomass fly ash on improvement of high-volume coal fly ash concrete properties. Construction and Building Materials 314, 125680, doi: 10.1016/j.conbuildmat.2021. 125680.
  • 36. Ulewicz, M. & Jura, J. (2017) Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar. Mineral Engineering Conference MEC2017, E3S Web of Conferences 18, 01029, doi: 10.1051/e3sconf/ 20171801029.
  • 37. Ulewicz, M. & Jura, J. (2019) Influence of bottom ashes from biomass on compressive strength of concretes. Materials Science Forum 972, doi: 10.4028/www.scientific.net/ MSF.972.3.
  • 38. Ulewicz, M. & Pietrzak, A. (2021) Properties and structure of concretes doped with production waste of thermoplastic elastomers from the production of car floor mats. Materials 14(4), doi: 10.3390/ma14040872.
  • 39. Wang, S., Llamazos, E., Baxter, L. & Fonseca, F. (2008) Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests. Fuel 87(3), pp. 359–364.
  • 40. Yang, D., Liu, M., Zhang, Z., Yao, P. & Ma, Z. (2022) Properties and modification of sustainable foam concrete including eco-friendly recycled powder from concrete waste. Case Studies in Construction Materials 16, e00826, doi: 10.1016/j.cscm.2021.e00826.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3139f6db-715b-44d9-8e95-c10e1ae86f93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.