PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency of aerobic biodegradation of beet molasses vinasse under non-controlled pH : conditions for betaine removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Efektywność tlenowej biodegradacji buraczanego wywaru melasowego przy nieregulowanym pH podłoża : określenie warunków usunięcia betainy
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to establish such conditions that would provide high-efficiency aerobic biodegradation of beet molasses vinasse with a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in batch processes without controlling the pH of the medium. Particular consideration was given to the betaine removal (the main pollutant of vinasse), which accounted for as much as 37.6% of total organic carbon. Biodegradation was performed in a stirred tank reactor at 27–63°C with initial pH (pH0) of 6.5 and 8.0. Efficiency of biodegradation was expressed in terms of reduction in SCODsum, which is a sum of SCOD (soluble chemical oxygen demand, i.e. COD determined after suspended solids separation) and theoretical COD of betaine. The values achieved at 27 and 36°C with pH0 = 8.0 exceeded 77.7%, whereas those obtained at 36 and 45°C with pH0 = 6.5 were higher than 83.6%. The high biodegradation effi ciency obtained in the four processes is attributable to the betaine removal by the bacterial strains used in the study. Maximal extent of reduction in SCODsum (85.41%), BOD5 (97.91%) and TOC (86.32%), and also the fastest rate of biodegradation (1.17 g O2/l∙h) was achieved at 36°C and pH0 = 8.0.
PL
Celem pracy było określenie warunków zapewniających wysoką efektywność tlenowej biodegradacji buraczanego wywaru melasowego za pomocą mieszanej kultury termo- i mezofi lnych bakterii z rodzaju Bacillus w procesach okresowych prowadzonych bez regulacji pH podłoża. Główną uwagę poświęcono usunięciu betainy (głównego zanieczyszczenia buraczanego wywaru melasowego). Stanowiła ona aż 37,6% zawartości ogólnego węgla organicznego w biodegradowanym wywarze. Procesy biodegradacji prowadzono w 5-litrowym bioreaktorze z układem mieszania w temperaturze 27–63°C, co 9°C, dla pH początkowego (pH0) równego 6,5 i 8,0. Wysoką efektywność biodegradacji wyrażoną poprzez redukcję SChZTcałk (suma SChZT (ChZT oznaczane po oddzieleniu części stałych) i teoretycznego ChZT betainy) uzyskano w procesach prowadzonych w temperaturze 27 i 36°C dla pH0 = 8,0 (redukcja ponad 77,7%) oraz 36 i 45°C dla pH0 = 6,5 (redukcja ponad 83,6%). Przyczyną wysokiej efektywności biodegradacji w wymienionych czterech procesach było usunięcie przez bakterie betainy. Maksymalny stopień redukcji SChZTcałk (85,41%), BZT5 (97,91%) i OWO (86,32%), jak również największą szybkość biodegradacji (1,17 g O2/l.h) uzyskano w eksperymencie prowadzonym w temperaturze 36°C dla pH0 = 8,0.
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
  • Wroclaw University of Economics, Poland Department of Bioprocess Engineering
autor
  • Wroclaw University of Economics, Poland Department of Bioprocess Engineering
autor
  • Wroclaw University of Economics, Poland Department of Bioprocess Engineering
  • Wroclaw University of Economics, Poland Department of Bioprocess Engineering
Bibliografia
  • [1] Beaudet, R., Gagnon, C., Bisaillon, J.G. & Ishaque, M. (1990). Microbial aspects of aerobic thermophilic treatment of swine waste, Applied and Environmental Microbiology, 56, 4, pp. 971-976.
  • [2] Becker, P., Köster, D., Popov, M.N., Markossian, S., Antranikian, G. & Märkl, H. (1999). The biodegradation of olive oil and the treatment of lipid-rich wool scouring wastewater under aerobic thermophilic conditions, Water Research, 33, 3, pp. 653-660.
  • [3] Carta-Escobar, F., Pereda-Martín, J., Alvarez-Mateos, P., Romero-Guzman, F., Duran-Barrantes, M.M. & Barriga-Mateos, F. (2004). Aerobic purication of dairy wastewater in continuous regime. Part I: Analysis of the biodegradation process in two reactor configurations, Biochemical Engineering Journal, 21, 2, pp. 183-191
  • [4] Caspi, R., Foerster, H., Fulcher, C.A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee, S.Y., Shearer, A.G., Tissier, C., Walk, T.C., Zhang, P. & Karp, P.D. (2008). The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Research, 36, pp. D623-D631.
  • [5] Cibis, E. (2004). Aerobic biodegradation of starch stillages from rural distilleries by means of mixed culture of thermo- and mesophilic bacteria of the genus Bacillus. Dissertation, Wroclaw University of Economics. (in Polish)
  • [6] Cibis, E., Kent, C.A., Krzywonos, M., Garncarek, Z., Garncarek, B. & Miśkiewicz, T. (2002). Biodegradation of potato slops from a rural distillery by thermophilic aerobic bacteria, Bioresource Technology, 85, 1, pp. 57-61.
  • [7] Cibis, E., Krzywonos, M. & Miśkiewicz, T. (2006). Aerobic biodegradation of potato slops under moderate thermophilic conditions: Effect of pollution load, Bioresource Technology, 97, 4, pp. 679-685.
  • [8] Cibis, E., Krzywonos, M., Trojanowska, K., Miśkiewicz, T. & Ryznar, A. (2004). Biodegradation of potato slops with a mixed population of bacteria of the genus Bacillus - determination of the process conditions, Electronic Journal of Polish Agricultural Universities, Series: Food Science and Technology, 7, 2, (http://www.ejpau.media.pl/volume7/issue2/food/art-01.html (1.03.2013))
  • [9] Cibis, E., Ryznar-Luty, A., Krzywonos, M., Lutosławski, K. & Miśkiewicz, T. (2011). Betaine removal during thermo- and mesophilic aerobic batch biodegradation of beet molasses vinasse: Influence of temperature and pH on the Progress and efficiency of the process, Journal of Environmental Management, 92, 7, pp. 1733-1739.
  • [10] Couillard, D. & Zhu, S. (1993). Thermophilic aerobic process for the treatment of slaughterhouse effluents with protein recovery, Environmental Pollution, 79, 2, pp. 121-126.
  • [11] Fang, M., Wong, M.H. & Wong, J.W.C. (2001). Digestion activity of thermophilic bacteria isolated from ash-amended sewage sludge compost, Water, Air and Soil Pollution, 126, 1-2, pp. 1-12.
  • [12] Focht, R.L., Schmidt, F.H. & Dowling, B.B. (1956). Colorimetric determination of betaine in glutamate process and liquor, Journal of Agricultural and Food Chemistry, 4, pp. 546-548.
  • [13] Gil-Pena, M., Gutierrez, M.J., Amo, E. & Schnabel, I. (1987). Acidogenic degradation of the nitrogen fraction in vinasse, Biotechnology Letters, 9, 8, pp. 587-592.
  • [14] GRFA, (http://www.globalrfa.org/pr_021111.php (10.12.2011))
  • [15] Handbook of Photometrical Operation Analysis. Dr. Lange (2000). BDB 079.
  • [16] Henze, M., Harremoës, P., la Cour Jansen, J. & Arvin, E. (2002). Wastewater Treatment: Biological and Chemical Processes, 3rd ed. Springer-Verlag, Berlin Heidelberg 2002.
  • [17] Jain, N., Nanjundaswamy, C., Minocha, A.K. & Verma, C.L. (2001). Isolation, screening and identification of bacterial strains for degradation of predigested distillery wastewater, Indian Journal of Experimental Biology, 39, 1, pp. 490-492.
  • [18] Jimenez, A. M., Borja,. R. & Martin, A., (2003). Aerobic-anaerobic biodegradation of beet molasses alcoholic fermentation wastewater, Process Biochemistry, 38, 9, pp. 1275-1284.
  • [19] Jimenez, A.M., Borja, R., Martin, A. & Raposo F. (2006). Kinetic analysis of the anaerobic digestion of untreated vinasses and vinasses previously treated with Penicillium decumbens, Journal of Environmental Management, 80, 4, pp. 303-310.
  • [20] Juteau, P., Tremblay, D., Ould-Moulaye, C.B., Bisaillon, J.G. & Beaudet, R. (2004). Swine waste treatment by self-heating aerobic thermophilic bioreactors, Water Research, 38, 3, pp. 539-546.
  • [21] Kosseva, M.R., Kent, C.A. & Lloyd, D.R. (2001). Thermophilic bioremediation of whey: effect of physico-chemical parameters on the efficiency of the process, Biotechnology Letters, 23, 20, pp. 1675-1679.
  • [22] Krzywonos, M., Cibis, E. & Miśkiewicz, T. (2002). Biodegradation of the potato slops with a mixed population of aerobic bacteria - optimisation of temperature and pH, Polish Journal of Food and Nutrition Sciences, 11/52, 4, pp. 13-18.
  • [23] Krzywonos, M., Cibis, E., Miśkiewicz, T. & Kent, C.A. (2008). Effect of temperature on the efficiency of the thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage), Bioresurce Technology, 99, 16, pp. 7816-7824.
  • [24] Krzywonos, M., Cibis,. E, Lasik, M., Nowak, J. & Miśkiewicz, T. (2009). Thermo- and mesophilic aerobic biodegradation of high-strength distillery wastewater (potato stillage) - Utilisation of main carbon sources, Bioresurce Technology, 100, 9, pp. 2507-2514.
  • [25] LaPara, T.M. & Alleman, J.E. (1999). Thermophilic aerobic biological wastewater treatment, Water Research, 33, 4, pp. 895-908.
  • [26] LaPara, T.M., Nakatsu, C.H., Pantea, L. M. & Alleman, J.E. (2002). Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE, Water Research, 36, 3, pp. 638-646.
  • [27] Lasik, M. & Nowak, J. (2006). Thermophilic aerobic biodegradation of food industry wastewater, Biotechnologia, 3, 74, pp. 98-112. (in Polish)
  • [28] Lasik, M., Nowak, J., Krzywonos, M. & Cibis, E. (2010). Impact of batch, repeated-batch (with cell recycle and medium replacement) and continuous processes on the course and efficiency of aerobic thermophilic biodegradation of potato processing wastewater, Bioresurce Technology, 101, 10, pp. 3444-3451.
  • [29] Leblanc, L., Gouffi , K., Leroi, F., Hartke, A., Blanco, C., Auffray, Y. & Pichereau, V. (2001). Uptake of choline from salmon flesh and its conversion to glycine betaine in response to salt stress in Shewanella putrefaciens, International Journal of Food Microbiology, 65, 1-2, pp. 93-103.
  • [30] Madejon, E., Lopez, R., Murillo, J.M. & Cabrera, F. (2001). Agricultural use of three (sugar-beet) vinasse composts: effect on crops and chemical properties of a Cambiosol soil in the Guadalquivir river valley (SW Spain), Agriculture, Ecosystems and Environment, 84, 1, pp. 55-65.
  • [31] Malladi, B. & Ingham, S.C. (1993). Thermophilic aerobic treatment of potato-processing wastewater, World Journal of Microbiology and Biotechnology, 9, 1, pp. 45-49.
  • [32] Martin, M.A., Raposo, F., Borja, R. & Martin, A. (2002). Kinetic study of the anaerobic digestion of vinasse pretreated with ozone, ozone plus ultraviolet light, and ozone plus ultraviolet light in the presence of titanium dioxide, Process Biochemistry, 37, 7, pp. 699-706.
  • [33] Merzouki, M., Delgenes, J.P., Bernet, N., Moletta, R. & Benlemlih, M. (1999). Polyphosphate- -accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors, Current Microbiology, 38, 1, pp. 9-17.
  • [34] Mohana, S., Acharya, B.K. & Madamwar, D. (2009). Distillery spent wash: Treatment technologies and potential applications. A review, Journal of Hazardous Materials, 163, 1, pp. 12-25.
  • [35] Murphy, J.D. & Power, N.M., 2008. How can we improve the energy balance of ethanol production from wheat? Fuel, 87, 10-11, pp. 1799-1806.
  • [36] Nandy, T., Shastry, S. & Kaul, S.N. (2002). Wastewater management in a cane molasses distillery involving bioresource recovery, Journal of Environmental Management, 65, 1, pp. 25-38.
  • [37] Rutkowska B., Szulc W., Łabętowicz J. & Gutowska A. (2008). Possibilities of the Agricultural Use of Decoctions from the Alcohol-Distilling Industry, Archives of Environmental Protection, 34, 3, pp. 163-168.
  • [38] Ryznar-Luty, A., Krzywonos, M., Cibis, E. & Miśkiewicz, T. (2008). Aerobic biodegradation of vinasse by a mixed culture of bacteria of the genus Bacillus: optimization of temperature, pH and oxygenation state, Polish Journal of Environmental Studies, 17, 1, pp. 101-112.
  • [39] Sapronov, A.R. (1963). Quantitative determination of colorants in the sugar industry products, Sacharnaia promyšlennost CCCP, 37, pp. 32-35. (in Russian)
  • [40] Satyawali, Y. & Balakrishnan, M. (2008). Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: A review, Journal of Environmental Management, 86, 3, pp. 481-497.
  • [41] Staton, K.L., Alleman, J.E., Pressley, R.L. & Eloff, J. (2001). 2nd Generation autothermal thermophilic aerobic digestion: conceptual issues and process advancements. (Proceedings of Water Environment Federation, WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, Biosolids 2001: Building Public Support. Water Environment Federation).
  • [42] Suvilampi, J. & Rintala, J. (2003). Thermophilic aerobic wastewater treatment, process performance, biomass characteristics, and effluent quality, Reviews, Environmental Science and Biotechnology, 2, 1, pp. 35-51.
  • [43] Thalasso, F., van der Burgt, J., O’Flaherty, V. & Colleran, E. (1999). Large-scale anaerobic degradation of betaine, Journal of Chemical Technology and Biotechnology, 74, 12, pp. 1176-1182.
  • [44] Tiirola, M. A., Suvilampi, J.E., Kulomaa, M.S. & Rintala, J.A. (2003). Microbial diversity in a thermophilic aerobic biofilm process: analysis by length heterogeneity PCR (LH-PCR), Water Research, 37, 10, pp. 2259-2268.
  • [45] Tripathi, C.R. & Allen, D.G. (1999). Comparison of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleached kraft pulp mill effluent, Water Research, 33, 3, pp. 836-846.
  • [46] Wilkie, A.C., Riesedel, K.J. & Owens, J.M. (2000). Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstock, Biomass and Bioenergy, 19, 2, pp. 63-102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3137ec98-0931-4493-b51a-e063da27babf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.