PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

RELAP5 Capability to Predict Pressure Wave Propagation Phenomena in Single- and Two-Phase Flow Conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Correct evaluation of the hydrodynamic loads induced by large and rapid pressure waves propagating with the speed of sound along the reactor piping systems and Reactor Pressure Vessel (RPV) is an important and difficult issue of nuclear power plant safety. The pressure shock transients and resulting hydrodynamic loads on the pipes and RPV structures are commonly calculated with one-dimensional thermo-hydraulic system codes such as RELAP5, TRACE, DRAKO and ROLAST. In Sweden, the most widely used computer code for this purpose is RELAP5. This code needs, therefore, to be assessed for its capability to predict pressure wave behavior. The conducted assessment involves simulations of single- and two-phase shock-tube problems and two-phase blowdown as well as water hammer experiments. The performed numerical experiments clearly show that RELAP5, with the proper time step and spatial mesh size, is capable of predicting the complex dynamics of single- and two-phase pressure wave phenomena with good to reasonable accuracy.
Rocznik
Strony
150--165
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr
Twórcy
  • Inspecta Nuclear AB, Stockholm, Sweden
autor
  • Inspecta Nuclear AB, Stockholm, Sweden
Bibliografia
  • [1] Information Systems Laboratories Inc., Rockville, Maryland, Idaho Falls, Idaho, RELAP5/MOD3.3 Code Manual, Volume 1-8 (2006).
  • [2] F. Odar, C. Murray, R. Shumway, M. Bolander, D. Barber, J. Mahaffy, TRACE V4.0 USER'S MANUAL, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, USA (2004).
  • [3] I. Tiselj, A. Horvath, G. Cerne, J. Gale, I. Parzer, B. Mavko, M. Giot, J. M. Seynhaeve, B. Kucienska, H. Lemonnier, WAHA3 Code Manual, Deliverable D10 of the WAHALoads Project (March 2004).
  • [4] Design basis for protection of light water nuclear power plant against the effects of postulated pipe rupture.
  • [5] Swedish Nuclear Power Inspectorate (SKI), Stockholm, SKIFS 2005:2, ISSN 1400-1187.
  • [6] KAE Kraftwerks- und Anlagen-Engineering GmbH, DRAKO 3.22, Users Manual, Rev. 3.3.0 (January 2005).
  • [7] M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, 1975.
  • [8] L. Shieh, R. Krishnamurthy, V. Ransom, Stability, accuracy, and convergence of the numerical methods in relap5/mod3, Nucl. Sci. Eng. 116 (1994) 227–244.
  • [9] A. Kaliatka, E. Ušpuras, M. Vaišnoras, Relap5 code analysis of water hammer wave behavior, ENERGETIKA 4 (2005) 1–9.
  • [10] Simulation of the propagation of pressure waves in piping systems with relap5/mod 3.2.2, comparison of computed and measured results, International Agreement Report NUREG/IA-0206, Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (June 2007).
  • [11] N. Lafferty, M. L. de Bertodano, V. H. Ransom, Relap5 analysis of two-phase decompression and rarefaction wave propagation under a temperature gradient, Nucl. Technol. 169 (1) (2010) 34–49.
  • [12] W. Barten, A. Jasiulevicius, O. Zerkak, R. Macian-Juan, Analysis of the umsicht water hammer benchmark experiment 329 using trace and relap5, J. of Mult. Sci. and Technol. 23 (1) (2011) 1–27.
  • [13] I. Tiselj, S. Petelin, Modelling of two-phase flow with second-order accurate scheme, J. of Comput. Phys. 136 (1997) 503–521.
  • [14] I. Tiselj, G. Cerne, Some comments on the behavior of the relap5 numerical scheme at very small time steps, Nucl. Sci. Eng. 134 (2000) 306–311.
  • [15] A. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Roland Press Co., 1954.
  • [16] I. Toumi, An upwind numerical method for two fluid flow models, Nuc. Sci. Engineering 123 (1996) 147–168.
  • [17] Y. Takeda, S. Toda, Pressure oscillations in subcooled decompression under temperature gradient, J. of Nuc. Sci. and Technol. 16 (7) (1979) 484–495.
  • [18] E. Altstadt, H. Carl, H. Prasser, R. Weiß, Fluid-structure interaction during artificially induced water hammers in a tube with bend experiments and analyses, Multiphase Science and Technology 20 (3–4) (2008) 213–238.
  • [19] T. Neuhaus, A. Dudlik, A. Tijsseling, Experiments and corresponding calculations on thermohydraulic pressure surges in pipes, External research report, Technische Universiteit Eindhoven (2005).
  • [20] A. Bousbia-Salah, Assessment of water hammer effects on boiling water nuclear reactor core dynamics, Nuclear Technology & Radiation Protection XXII (1) (2007) 18–33.
  • [21] I. Tiselj, Artificially induced water hammers in a tube with bend - experiments and analyses, in: Two-Phase flow Modelling, Seminar handouts, Multiphase Science and Technology„ Vol. 20, Jožef Stefan Institute, Slovenia,2008, p. 231.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3136a490-0913-463d-ae33-79530811c0a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.