PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Database System for Estimating the Biogas Potential of Cattle and Swine Feces in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Animal biomass is an important substrate in the anaerobic digestion process. The implementation of a waste technology for energy production, such as the production of biogas from animal waste, has been recognized in many countries as one of the best ways to achieve the Sustainable Energy Development Goals. Without a systematic review of resources and accurate estimation of available sources in terms of the amount of potential electricity, it is impossible to manage biomass rationally. The main aim of the article was to present a new tool for assessing the biomass of animal origin and estimating its potential energy through a computer database, which will be widely available in the end of 2020 to show results from the calculation using the database. This tool is configured to enter the data on the developed and undeveloped biomass resources in production of farm animals in rural areas in Poland. Calculations from the database show the biogas potential of swine and cattle manure and slurry in Poland, which is approximately 5.04 billion m3, with a 60% share of methane in biogas. It is the value of approximately 3.03 billion m3 of methane. It is worth underlining that slurry and manure are not high-energy substrates; therefore, it is necessary to introduce more energetic substrate streams to improve the biogas plant efficiency.
Słowa kluczowe
Rocznik
Strony
111--120
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Institute of Technology and Life Sciences, Falenty, Hrabska 3, 05-090 Raszyn, Poland
  • Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
  • Department of Environmental Engineering and Geodesy, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069 Lublin, Poland
  • Department of the Electrotechnics Energetics Electronics and Automatics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 11, 10-736 Olsztyn, Poland
  • Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland
Bibliografia
  • 1. Batidziari B., Smeets E.M.W., Paaij A.P. 2012. Harmonising bioenergy potential assessments. Renewable and Sustainable Energy Reviews, 16, 6598–6630 doi: 10.1016/j.rser.2012.09.002.
  • 2. Bogacka M., Pikoń K. 2017. Biomass as fuel. In: Kotowicz J.; Pikoń K. (Eds) Contemporary problems of energy. Gliwice, 121–132 (in Polish).
  • 3. Bücker F., Marder M., Peiter M.R., Lehn D.N., Esquerdo V.M., A. de Almeida Pinto L., Konrad O. 2020. Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy, 147, 798–805, doi:10.1016/j.renene.2019.08.140.
  • 4. Czekała W. 2018. Agricultural Biogas Plants as a Chance for the Development of the Agri-Food Sector. Journal of Ecological Engineering, 19(2), 179–183. doi: 10.12911/22998993/83563.
  • 5. Czekała W., Bartnikowska, S., Dach, J., Janczak D., Smurzyńska A., Kozłowski, K., Bugała A., Lewicki, A., Cieślik, M., Typańska, D., Mazurkiewicz J. 2018. The energy value and economic efficiency of solid biofuels produced from digestate and sawdust. Energy, 159, 1118–1122, doi:10.1016/j.energy.2018.06.090.
  • 6. Czekała W., Cieślik M., Janczak D., Czekała A., Wojcieszak D., 2018. Fruit and vegetable waste from markets as a substrate for biogas plant. 18th International Multidisciplinary Scientific Geoconference SGEM 2018. Conference Proceedings vol. 18, Energy and Clean Technologies Issue: 4.3, 473–478, doi: 10.5593/sgem2018V/4.3/S11.056.
  • 7. Czekała W., Lewicki A., Pochwatka P., Czekała A., Wojcieszak D., Jóźwiakowski K., Waliszewska H. 2020. Digestate management in polish farms as an element of the nutrient cycle. Journal of Cleaner Production, 242, 118454. doi:10.1016/j.jclepro.2019.118454.
  • 8. Dach J., Boniecki P., Przybył J., Janczak D., Lewicki A., Czekała W., Witaszek K., Carmona Cesar P., Cieślik M., 2014. Energetic efficiency analysis of the agricultural biogas plant in 250 kWe experimental installation, Energy, 69, 34–38 doi: 10.1016/j.energy.2014.02.013.
  • 9. Directive (EU) 2009/28/EC of the European Parliament and of the Council of 23 April 2009o n the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX%3A32009L0028&from=EN (Accessed: 16-Nov-2020).
  • 10. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Available online: https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG (Accessed: 16-Nov-2020).
  • 11. Directive EU 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 2009/28/EC on the promotion of the use of energy from renewable sources. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/PDF/?uri=CELEX:32015L1513&from=EN (Accessed: 16-Nov-2020)
  • 12. Esteves E., Herrera Naranjo A., Esteves Pecanha V., Morgado C., 2019. Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, pp. 411–423 doi: 10.1016/j.jclepro.2019.02.091.
  • 13. Eurostat Glossary [Online]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Biomass (Accessed: 16-Nov-2020)
  • 14. Grzybek A., Pawlak J., 2015. Potential and use of renewable energy sources in agriculture. Wydawnictwo ITP Falenty (in Polish).
  • 15. GUS Agricultural Census 2010. Livestock and selected elements of animal production method, 1390.
  • 16. Khoshnevisan B., Duan N., Tsapekos P., Awasthi M., Liu Z., Mohammadi A., Angelidaki I., Tsang CW. D., Zhang Z., Pan J., Ma Lin; Aghbashlo M., Tabatabaei M., Liu H. A., 2021. Circular review on livestock manure biorafinery technologies: Sustainability, challenges, and future perspectives. Renewable and Sustainable Energy Reviews, 135, 11033 doi: 10.1016/j.rser.2020.110033.
  • 17. Konieczny R., Fedko M., Łaska B., Golimowski W., 2015. New models of biomass resource monitoring and available technologies for its conversion in RES installations (in Polish).
  • 18. Kowalczyk-Juśko A., Pochwatka P., Zaborowicz M., Czekała W., Mazurkiewicz J., Mazur A., Janczak D., Marczuk A., Dach J. 2020. Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy, Vol. 202, July 117729. doi: 10.1016/j.energy.2020.117729 .
  • 19. Kowalczyk-Juśko A., Mazur K., Maciąg M., Pochwatka P., Listosz A., Mazur A. 2020. Estimation of Potential of Agriculture Biogas Production in Biała Podlaska County (Poland). Journal of Ecological Engineering 21, 156–162, doi:10.12911/22998993/126986.
  • 20. Kozłowski K., Dach J., Lewicki A., Malińska K., Carmo I., Czekała W. Potential of biogas production from animal manure in Poland. Archives of Environmental Protection, 2019. 45, 3, 99–108, doi: 10.24425/aep.2019.128646.
  • 21. Kozłowski K., Pietrzykowski M., Czekała W., Dach J., Kowalczyk-Juśko A., Jóźwiakowski K., Brzoski M., 2019. Energetic and economic analysis of biogas plant with using the dairy industry waste, Energy, 183, 1023–1031, doi:10.1016/j.energy.2019.06.179.
  • 22. Kupryaniuk K., Oniszczuk T., Combrzyński M., Czekała W., Matwijczuk A. 2020. The Influence of Corn Straw Extrusion Pretreatment Parameters on Methane Fermentation Performance. Materials (Basel), 13, 3003, doi:10.3390/ma13133003.
  • 23. Latifi P., Karrabi M., Danesh S. 2019. Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids) Renewable and Sustainable Energy Reviews, 107, 288–296 doi:10.1016/j.rser.2019.03.015.
  • 24. Lewandowski W.M. 2001. Proecological renewable sources. Wydawnictwa Naukowo-Techniczne, Warszawa (in Polish).
  • 25. Liu T., McConkey B., Huffman T., Smith S., MacGregor B., Yemshanow D., Kulshreshtha S. Potential and impacts of renewable energy production from agricultural biomass in Canada. Applied Energy, 2014, 130, 222–229 doi: 10.1016/j.apenergy.2014.05.044.
  • 26. Marks S., Dach J., Garcia-Morales J.L., FernandezMorales F.J. 2020. Bio-Energy Generation from Synthetic Winery Wastewaters. Applied Sciences,10, 8360, doi:10.3390/app10238360.
  • 27. Mroczek K., Kucharyk S., Rudy M., Mroczek R. J. 2019. Options for utilisation of waste from meat industry in compliance with the rules of bioeconomy. Polish Journal for Sustainable Development, 23(2) (in Polish).
  • 28. Munawar K., Barawi Ali M., Heryanto R., Rizalie A. 2019. Waste to energy technologies: The potential of sustainable biogas prouction from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105, 323–331, doi: 10.1016/j.rser.2019.02.011.
  • 29. Myczko M., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M. 2011. Construction and operation of agricultural biogas plants. Instytut Technologiczno-Przyrodniczy. Poznań (in Polish).
  • 30. Orlando M-Q., Borja V-M. 2020. Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review. Energies, 13(14), 3573; doi:10.3390/en13143573.
  • 31. PGNiG 2020 [Online]. Available online: http://en.pgnig.pl/news/-/news-list/id/pgnig-less-gasfrom-russia-lng-imports-on-the-rise/newsGroupId/1910852?changeYear=2020&currentPage=1 (Accessed: 19-Nov-2020).
  • 32. Pochwatka P., Kowalczyk-Juśko A., Sołowiej P., Wawrzyniak A., Dach J., 2020. Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. Energies. 2020, 13, 6058, doi: 10.3390/en13226058.
  • 33. PROGRAM 2016–2020 [Online]: Available online: https://www.itp.edu.pl/pw/PW2016/zadanie-1.html. (Accessed: 16-Nov-2020) .
  • 34. Regulation of the Council of Ministers of June 5th, 2018 on the adoption of the Action Program to reduce water pollution with nitrates from agricultural sources and to prevent further pollution.
  • 35. Salazar-Gonzales M., Venturini M., Poganietz W., Finkenrath M., Spina Ruggero P., 2016. Methodology for improving the reliability of biomass energy potential estimation. Biomass and Bioenergy, 2016, 88, 43–58, doi: 10.1016/j.biombioe.2016.03.026.
  • 36. Siejka K., Tańczuk M., Trinczek K. 2008. The concept of the estimating the energy potential of biomass of an example of the selected commune Opolskie Voivodeship. Agricultural Engineering 6(104), 167–173 (in Polish).
  • 37. Soares C., Viancelli A., Michelan W., Sbardelloto M., Camargo A., Vargas L.P.G., Fongario G., Treichel H. 2020. Biogas yield prospection from swine manure and placenta in real-scale systems on circular economy approach. Biocatalysis and Agricultural Biotechnology, 25, 101598, doi: 10.1016/j.bcab.2020.101598.
  • 38. Stolarski J. M., Warmiński K., Krzyżaniak M., Olba-Zięty E., Akincza M. 2020. Bioenergy technologies and biomass potential vary in Northern European countries. Renewable and Sustainable Energy Reviews 133, 110238, doi: 10.1016/j.rser.2020.110238.
  • 39. Szymańska I., Brzeski M., Żbikowska A. 2020. Waste management of the food industry in Poland with particular emphasis on fatty waste, Food Industry, 74(8), 23–27, doi: 10.15199/65.2020.8.3.
  • 40. Zahraee S., Shiwakoti N., Stasinopalos P. 2020. Biomass supply chain environmental and socio-economic analysis:40years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass and Bioenergy, 142, 105777, doi: 10.1016/j.biombioe.2020.105777.
  • 41. Zbytek Z., Adamczyk F. 2017. Possibilities of using solid biomass. Part 1. Legal conditions and division of solid biomass. Forest Horticultural Agricultural Technique, Vol. 2/2017 (in Polish).
  • 42. Zyadin A., Natarajan P., Latva-Kayra P., Igliński B., Igliński A., Trishkin M., Pelkonem P. Papinnen. 2018. Estimation of surplus biomass potential in southern and central Poland using GIS application. Renewable and Sustainable Energy Reviews, 89, 204–215, doi: 10.1016/j.rser.2018.03.022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-313335dd-6c71-470b-9b29-ceccadb701e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.