PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response surface methodology approach for optimization of biosorption process for removal of Hg(II) ions by immobilized algal biomass coelastrella sp.

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, adsorption stands as a viable technique for the effective removal of pollutants such as heavy metals from water. Within this research endeavor, adapted green algae (Coelastrella sp.) have been harnessed as a sustainable and environmentally conscious adsorbent, employed in the removal of Hg(II) ions from a simulated aqueous solution via employment of an Airlift bioreactor. The analysis of the attributes of adsorbent was conducted through the utilization of Fourier transform infrared (FTIR) spectroscopy. The examination of residual concentrations of Hg(II) ions in the treated solution was accomplished through the utilization of atomic absorption spectroscopy (AAS). The impact of various experimental factors, including the duration of contact (ranging from 10 to 90 minutes), initial concentrations of Hg(II) ions (ranging from 500 to 2000 μg/l), quantity of adsorbent introduced (ranging from 0.1 to 0.7 g per 250 ml), temperature variations (ranging from 20 to 40° C), and airflow velocity (ranging from 200 to 300 ml/min), was systematically examined. For the optimization of adsorption efficiency, MINITAB 18 software was employed. The equilibrium data was subjected to analysis using the Langmuir, Freundlich, and Temkin isotherm models. Employing the framework recommended by MINITAB 18, the optimal parameters for adsorption were identified as 2000 μg/l for initial concentration, 90 minutes for contact time, 40° C for temperature, and 300 ml/min for airflow rate. The Langmuir equation yielded the highest adsorption capacity, measuring 750 μg/g at a temperature of 40° C.
Słowa kluczowe
Rocznik
Strony
57--68
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wz.
Twórcy
  • Chemical engineering department, University of Technology – Iraq Baghdad, Iraq
  • Chemical engineering department, University of Technology – Iraq Baghdad, Iraq
  • Chemical engineering department, University of Technology – Iraq Baghdad, Iraq
  • Nanotechnology and Advanced Materials Research Centre, University of Technology-Iraq Baghdad, Iraq
  • Department of Engineering and Environmental Sciences – The Libyan Academy-Misrata Libya
  • School of Civil and Environmental Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, 2007 Australia
Bibliografia
  • 1. Jabbar, N.M., Alardhi, S.M., Al-Jadir, T., & Dhahad, H.A. (2023). Contaminants removal from real refinery wastewater associated with energy generation in microbial fuel cell. J. Ecol. Eng. 24(1), 107–114. DOI: 10.12911/22998933/15681.
  • 2. Alardhi, S.M., Ali, N.S., Cata Saady, N.M., Zendehboudi, S., Salih, I.K., Alrubaye, J.M. & Albayati, T.M. (2024). Separation techniques in different configurations of hybrid systems via synergetic adsorption and membrane processes for water treatment: A review, J. Ind. Engin.Chem. 130, 91–104. DOI: 10.1016/j.jiec.2023.09.051.
  • 3. Fiyadh, S.S., Alardhi, S.M., Al Omar, M., Aljumaily, M.M., Al Saadi, M.A., Fayaed, S.S., Ahmed, S.N., Salman, A.D., Abdalsalm, A.H., Jabbar, N.M. & El-Shafi, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique, J. Heliyon. 9(4). DOI: 10.1016/j.heliyon.2023.e15455.
  • 4. Al-Jadir, T., Alardhi, S.M., Alheety, M.A., Najim, A.A., Salih, I.K., Al-Furaiji, M. & Alsalhy, Q.F. (2022). Fabrication and characterization of polyphenylsulfone/titanium oxide nanocomposite membranes for oily wastewater treatment, J. Ecol. Eng. 23(12), 1–13. DOI: 10.12911/22998993/154770.
  • 5. Dawood Salman, A., Alardhi, S.M., AlJaberi, F.Y., Jalhoom, M.G., Le, P.C., Al-Humairi, S.T., Adelikhah, M., Farkas, G. & Abdulhady Jaber, A. (2023). Defining the optimal conditions using FFNNs and NARX neural networks for modelling the extraction of Sc from aqueous solution by Cryptand-2.2.1 and Cryptand-2.1.1, J. Heliyon. 9(11). DOI: 10.1016/j.heliyon.2023.e21041.
  • 6. Alardhi, S.M., Aljaberi, F.Y., Kadhim, W.A., Jadir, T.A., Alsaedi, L.M., Jabbar, N. M., Almarmadh, A., Komsh, G.G. & Adnan, M. (2023). Investigating the capability of MCM-41 nanoparticle for COD removal from Iraqi petroleum refinery wastewater, AIP Conference Proceedings. 2820(1). DOI: 10.1063/5.0151096
  • 7. Al-Jadir, T., Alardhi, S.M., Al-Sheikh, F., Jaber, A.A., Kadhim, W.A., Rahim, M.H. A. (2023). Modeling of lead (II) ion adsorption on multiwall carbon nanotubes using artificial neural network and Monte Carlo technique. Chem. Engin. Commun. 210(10), 1642–1658. DOI: 10.1080/00986445.2022.2129622.
  • 8. Jasim, M.A., AlJaberi, F.Y., Salman, A.D., Alardhi, S.M., Le, P.-C., Kulcsár, G. & Jakab, M. (2023). Studying the effect of reactor design on the electrocoagulation treatment performance of oily wastewater. Heliyon, 9(7), e17794. DOI: 10.1016/j.heliyon.2023.e17794.
  • 9. Rio, S. & Delebarre, A. (2003). Removal of mercury in aqueous solution by fluidized bed plant fly ash. Fuel, 82(2), 153–159. DOI: 10.1016/S0016-2361(02)00237-5.
  • 10. Gworek, B., Dmuchowski, W., Baczewska, A.H., Brągoszewska, P., Bemowska-Kałabun, O., Wrzosek-Jakubowska, J. (2017). Air contamination by mercury, emissions and transformations—a review. Water, Air, & Soil Pollution, 228, 1–31. DOI: 10.1007/s11270-017-3311-y.
  • 11. Hassan, S.S., Awwad, N.S. & Aboterika, A.H. (2008). Removal of mercury (II) from wastewater using camel bone charcoal. J. Hazard Mater. 154(1-3), 992–997. DOI: 10.1016/j.jhazmat.2007.11.003.
  • 12. Loureiro, L., Machado, L., Geada, P., Vasconcelos, V., Vicente, A.A. (2023). Evaluation of efficiency of disruption methods for Coelastrella sp. in order to obtain high yields of biochemical compounds release. Algal Res. 73, 103158. DOI: 10.1016/j.algal.2023.103158.
  • 13. Liu, H.-Y., Yu, Y., Yu, N.-N., Ding, Y.-F., Chen, J.-M. & Chen, D.-Z. (2022). Airlift two-phase partitioning bioreactor for dichloromethane removal: Silicone rubber stimulated biodegradation and its auto-circulation. J. Environ. Manag. 319, 115610. DOI: 10.1016/j.jenvman.2022.115610.
  • 14. Goecke, F., Noda, J., Paliocha, M. & Gislerød, H.R. (2020). Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J. Microbiol. Biotech. 36(10), 149. DOI: 10.1007/s11274-020-02897-0.
  • 15. Mtaki, K., Kyewalyanga, M.S. & Mtolera, M.S. (2021). Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annals Microbiol. 71(7), 1-13. DOI: 10.1186/s13213-020-01618-0.
  • 16. Alardhi, S.M., Abdalsalam, A.H., Ati, A.A., Abdulkareem, M.H., Ramadhan, A.A., Taki, M.M. & Abbas, Z.Y. (2023). Fabrication of polyaniline/zinc oxide nanocomposites: synthesis, characterization and adsorption of methylene orange. Polym. Bull. 81, 1–35. DOI: 10.21203/rs.3.rs-1785804/v2.
  • 17. Alardhi, S.M., Fiyadh, S.S., Salman, A.D. & Adelikhah, M. (2023). Prediction of methyl orange dye (MO) adsorption using activated carbon with an artificial neural network optimization modeling. Heliyon, 9(1). DOI: 10.1016/j.heliyon.2023.e12888.
  • 18. Al-Najar, J.A., Al-Humairi, S.T., Lutfee, T., Balakrishnan, D., Veza, I., Soudagar, M. E. M. & Fattah, I.M. (2023). Cost-effective natural adsorbents for remediation of oil-contaminated water. Water, 15(6), 1186. DOI:10.3390/w15061186.
  • 19. Remedhan, S.T. (2020). Experimental investigation of thermodynamics, kinetics, and equilibrium of nickel Ion removal from wastewater using zinc oxide nanoparticles as the adsorbent. Engin. Technol. J. 38(7), 1047–1061. DOI: 10.30684/etj.v38i7A.60.
  • 20. Yetilmezsoy, K., Demirel, S. & Vanderbei, R.J. (2009). Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard Mater, 171(1-3), 551–562. DOI: 10.1016/j.jhazmat.2009.06.035.
  • 21. Kumar, R., Singh, R., Kumar, N., Bishnoi, K. & Bishnoi, N.R. (2009). Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis. Chem. Engin. J. 146(3), 401–407. DOI: 10.1016/j.cej.2008.06.020.
  • 22. Singh, K.P., Singh, A.K., Singh, U.V. & Verma, P. (2012). Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design. Environ. Sci. Pollut. Res. 19, 724–738. DOI: 10.1007/s11356-011-0611-4.
  • 23. Reddy, D.H.K. & Lee, S-M. (2013). Three-dimensional porous spinel ferrite as an adsorbent for Pb (II) removal from aqueous solutions. Ind. Eng. Chem. Res. 52(45), 15789–15800. DOI: 10.1021/ie303359e.
  • 24. Ahmad, R., Kumar, R. & Laskar, M.A. (2013). Adsorptive removal of Pb2+ form aqueous solution by macrocyclic calix [4] naphthalene: kinetic, thermodynamic, and isotherm analysis. Environ. Sci. Pollut. Res. 20, 219–226. DOI: 10.1007/s11356-012-0838-8.
  • 25. Liu, D., Li, Z., Li, W., Zhong, Z., Xu, J., Ren, J. & Ma, Z. (2013). Adsorption behavior of heavy metal ions from aqueous solution by soy protein hollow microspheres. Ind. Eng. Chem. Res. 52(32), 11036–11044. DOI: 10.1021/ie401092f.
  • 26. Wu, D., Zhou, J. & Li, Y. (2009). Effect of the sulfidation process on the mechanical properties of a CoMoP/Al2O3 hydrotreating catalyst. Chem. Engin. Sci. 64(2), 198–206. DOI: 10.1016/j.ces.2008.10.014.
  • 27. Almeida, C., Debacher, N., Downs, A., Cottet, L. & Mello, C. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloïd Interf. Sci. 332(1), 46–53. DOI: 10.1016/j.jcis.2008.12.012.
  • 28. Fertu, D.I., Bulgariu, L. & Gavrilescu, M. (2022). Modeling and optimization of heavy metals biosorption by low-cost sorbents using response surface methodology. Processes, 10(3), 523. DOI: 10.3390/pr10030523.
  • 29. Igberase, E., Osifo, P. & Ofomaja, A. (2017). The adsorption of Pb, Zn, Cu, Ni, and Cd by modified ligand in a single component aqueous solution: equilibrium, kinetic, thermodynamic, and desorption studies. Internat. J. Analyt. Chem. 2017. DOI: 10.1155/2017/6150209.
  • 30. Mohammed, A.A. & Isra’a, S.S. (2018). Bentonite coated with magnetite Fe3O4 nanoparticles as a novel adsorbent for copper (II) ions removal from water/wastewater. Environ. Technol. & Innovat. 10, 162–174. DOI: 10.1016/j.eti.2018.02.005.
  • 31. Khan, M.A., Kim, S.-w., Rao, R.A.K., Abou-Shanab, R., Bhatnagar, A., Song, H. & Jeon, B.-H. (2010). Adsorption studies of dichloromethane on some commercially available GACs: effect of kinetics, thermodynamics and competitive ions. J. Hazard. Mater. 178(1-3), 963–972. DOI: 10.1016/j.jhazmat.2010.02.032.
  • 32. Azeez, R.A. & Al-Zuhairi, F.K.I. (2022). Biosorption of dye by immobilized yeast cells on the surface of magnetic nanoparticles. Alexandria Engin. J., 61(7), 5213–5222. DOI: 10.1016/j.aej.2021.10.044.
  • 33. Langmuir, I. (1917). The constitution and fundamental properties of solids and liquids. II. Liquids. J. Amer. Chem. Soc. 39(9), 1848–1906.
  • 34. Al-Ghouti, M.A. & Da’ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard Mater. 393, 122383. DOI: 10.1016/j.jhazmat.2020.122383.
  • 35. Wang, J. & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. DOI: 10.1016/j.chemosphere.2020.127279.
  • 36. Dada, A., Olalekan, A., Olatunya, A. & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem. 3(1), 38–45.
  • 37. Arshadi, M., Amiri, M.J. & Mousavi, S. (2014). Kinetic, equilibrium and thermodynamic investigations of Ni (II), Cd (II), Cu (II) and Co (II) adsorption on barley straw ash. Water Res. Ind. 6, 1–17. DOI: 10.1016/j.wri.2014.06.001.
  • 38. Sağ, Y. & Aktay, Y. (2000). Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem. 36(1-2), 157–173. DOI: 10.1016/S0032-9592(00)00200-4.
  • 39. Yagub, M.T., Sen, T.K. & Ang, H. (2012). Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water, Air, & Soil Pollut. 223, 5267–5282. DOI: 10.1007/s11270-012-1277-3.
  • 40. Wang, H., Xie, R., Zhang, J. & Zhao, J. (2018). Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: Mass transfer and equilibrium modeling. Adv. Powder Technol. 29(1), 27–35. DOI: 10.1016/j.apt.2017.09.027.
  • 41. Yao, S., Zhang, J., Shen, D., Xiao, R., Gu, S., Zhao, M. & Liang, J. (2016). Removal of Pb (II) from water by the activated carbon modified by nitric acid under microwave heating. J. Colloid Interf. Sci. 463, 118–127. DOI: 10.1016/j.jcis.2015.10.047.
  • 42. Prajapati, A.K. & Mondal, M.K. (2020). Comprehensive kinetic and mass transfer modeling for methylene blue dye adsorption onto CuO nanoparticles loaded on nanoporous activated carbon prepared from waste coconut shell. J. Molec. Liquids, 307, 112949. DOI: 10.1016/j.molliq.2020.112949.
  • 43. Shukla, S. & Skhardande, V. (1992). Column studies on metal ion removal by dyed cellulosic materials. J. Appl. Pol. Sci. 44(5), 903–910. DOI: 10.1002/app.1992.070440518.
  • 44. Yao, Y., Velpari, V. & Economy, J. (2014). Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel, 116, 560–565. DOI: 10.1016/j.fuel.2013.08.063.
  • 45. Arsuaga, J.M., Aguado, J., Arencibia, A. & López-Gutiérrez, M.S. (2014). Aqueous mercury adsorption in a fixed bed column of thiol functionalized mesoporous silica. Adsorption, 20, 311–319. DOI: 10.1007/s10450-013-9586-4.
  • 46. Oliva, J., De Pablo, J., Cortina, J.-L., Cama, J. & Ayora, C. (2011). Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: Column experiments. J. Hazard. Mater. 194, 312–323. DOI: 10.1016/j.jhazmat.2011.07.104.
  • 47. Johari, K., Saman, N. & Mat, H. (2014). Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents. Environ. Technol. 35(5), 629–636. DOI: 10.1080/09593330.2013.840321.
  • 48. Johari, K., Saman, N. & Mat, H. (2013). A comparative evaluation of mercury (II) adsorption equilibrium and kinetics onto silica gel and sulfur-functionalised silica gels adsorbents. Canadian J. Chem. Engin. 92(6), 1048–1058. DOI: 10.1002/cjce.21949.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-313116e5-faa4-47d9-8ec8-34eeccdfd9ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.