Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of numerical simulations using the FEM (Finite Element Method) of the engine mount strength for mounting an aircraft diesel engine with opposite pistons called PZL-100. Four versions of the mount prepared by aircraft engine producer WSK "PZL-Kalisz" company were analyzed. Tests were performed in Catia v5 software in the Generative Structure Analysis module. The boundary conditions were engine gravity force, propeller thrust force, and propeller torque. S235JR steel was defined as the material. A design grid with tetrahedral elements with a single element size of 2 mm was used. As part of the simulation study, four structural solutions for the test engine mounts were calculated in terms of strength. The results of stress maps and the magnitude of deformation of the mount elements were compared. Based on the obtained results, one of the mount versions was recommended for actual fabrication.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
230--241
Opis fizyczny
Bibliogr. 26 poz., fig., tab.
Twórcy
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Wytwórnia Sprzętu Komunikacyjnego„PZL-Kalisz” S.A., ul. Częstochowska 140, 62-800 Kalisz, Poland
Bibliografia
- 1. Magryta P., Pietrykowski K. Simulation research of the strength of an engine mount in an aircraft piston diesel engine. Journal of Physics; Conference Series; 2021; 2130: 012017.
- 2. Grabowski Ł., Pietrykowski K., Karpiński P. The zero-dimensional model of the scavenging process in the opposed-piston two-stroke aircraft diesel engine. Propulsion and Power Research; 2019; 8 (4).
- 3. Magryta P., Pietrykowski K., Gęca M. Thermodynamic Model of the ASZ-62IR Radial Aircraft Engine. Transactions on Aerospace Research; 2018; 2018 (1): 36-48.
- 4. Czyż Z., Grabowski Ł., Pietrykowski K., Czarnigowski J., Porzak M. Measurement of flight parameters in terms of toxic emissions of the aircraft radial engine ASz62-IR. Measurement; 2018; 113: 46-52.
- 5. Biały M., Pietrykowski K., Tulwin T., Magryta P. CFD numerical simulation of the indirect cooling system of an internal combustion engine. Combustion Engines; 2017; 170(3): 8-18.
- 6. Pietrykowski K., Magryta P., Skiba K. Finite element analysis of a composite piston for a diesel aircraft engine. Combustion Engines; 2019; 179(4): 107-111.
- 7. Stoklosa R. Aircraft Engine Mount – Frequency/Vibration Testing. Solid Works Tech blog; 2018.
- 8. Lisitsin O. Aspects of the Light Aircraft Engine Mounts Strenght analysis. Engre Engineering Elements Blog; 2020.
- 9. Jurek M., Judičák J. Design and analysis of engine mount for the use of modern-design engine in small sport plane Zlin 26 Series. Acta Avionica; 2013; 15(27).
- 10. Engine mount analysis report. Report No ER01002; 2003.
- 11. Ly D. Nguyen, Taison K., Remo N. A Methodology to Analyse Aircraft Engine Gearbox and Mounting System Simultaneously Using Finite Element Analysis. SAE Transactions; 2002; 111(1): JOURNAL OF AEROSPACE: 601-608.
- 12. Guillaume M., Schläpfer E., Schmid M. Structural Analysis of Ageing Pilatus P-3 Engine Mount. Procedia Engineering; 2015; 114: 583–589.
- 13. Lokwic P. Optimisation of the Lift Carrying Frame Construction by Using Finite Element Method. Advances in Science and Technology Research Journal; 2018; 12(4): 207–215.
- 14. Markuszewski D., Wądołowski M., Gorzym M., Bielak M. Concept of a composite frame of martian vehicle. Advances in Science and Technology Research Journal; 2021; 15(4): 222–230.
- 15. LongH., Zhang B., Su J., Deng Q. Failure analysis of engine mounting bracket of a passenger car. Engineering Failure Analysis; 2022; 136: 106190.
- 16. Adkine A. S., Overikar G. P., Surwase S. S. Modal analysis of engine supporting bracket using finite element analysis. International Journal of Advanced Engineering Research and Science (IJAERS); 2017; 4(3): 55-63.
- 17. Mazuro P., Kozak D. Experimental investigation on the performance of the prototype of aircraft Opposed-Piston engine with various values of intake pressure. Energy Conversion and Management; 2022; 269: 116075.
- 18. Huasheng C., Zhenfeng Z., Fujun Z., Chuncun Y. Lei W. Effect of pre-chamber volume on combustion characteristics of an SI aircraft piston engine fueled with RP3. Fuel; 2021; 286: 1(15).
- 19. Biały M., Grabowski Ł., Skórzyński B., Barański G., Majczak A. Analyzing mechanical vibrations of an aircraft opposed piston engine. Combustion Engines; 2021; 187(4): 3–7.
- 20. https://metinvestholding.com/pl/products/steelgrades/s235jr.
- 21. Lakshmankumar A., Balasivaramareddy K., Sathiskumar A., Kuthus. Stress analysis and optimization of engine mount. International Journal of Mechanical Engineering and Technology (IJMET); 2017; 8(6): 148-155.
- 22. WU K., LING L., HAN Ch. Design of GFRP Engine Mount Frame by Using Topology Optimization. In: Proc. of 2nd Annual International Conference on Advanced Material Engineering, Wuchan, China, 1243-1250.
- 23. Alkhatib F. Techniques for engine mount modeling and optimization. University of Wisconsin Milwaukee UWM Digital Commons. 2013.
- 24. Ramesh S., Handal R., Jensen M. J., Rusovici R. Topology optimization and finite element analysis of a jet dragster engine mount. Cogent Engineering; 2020; 7(1).
- 25. Cygnarowska K., Czyż Z., Karpiński P., Skiba K. Strength analysis of the rotor hub of an unmanned helicopter. Journal of Physics: Conference Series, 2021, 1736.
- 26. Ligaj B. Materiały do ćwiczeń z Podstaw Konstrukcji Maszyn.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3130452b-9aaf-41a9-8eaa-7f2374ba8257