Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of this research was to analyze how different milling parameters impact the roughness of the surface produced during the machining process. Kinematic parameters, such as cutting speed and feed per tooth, as well as geometric parameters, such as axial and radial depth of machining, were considered in various configurations to determine which one had the greatest impact on the surface quality of 1.4301 stainless steel (also known as AISI 304, among other designations). This type of steel is commonly used in a number of industries, such as construction, automotive, food, chemical, decoration, oil, and petrochemical, owing to its favorable properties. It is also relatively cheap. The analyzed roughness parameters included Ra, Rq, Rz, Rt, which, considered collectively, provide a comprehensive picture of the overall surface quality. Based on the results, feed per tooth is the one parameter that was to a large degree responsible for the overall quality roughness of the surface of the analyzed samples. The remaining tested parameters also had an impact on the surface quality, which resulted in a dynamic increase or decrease in roughness (extremes), but not to the same degree as in the case of feed per tooth. At one point, for a relatively low axial depth of cut, a sudden increase in the resulting roughness was recorded.
Wydawca
Rocznik
Tom
Strony
299--312
Opis fizyczny
Bibliogr. 50 poz., fig., tab.
Twórcy
autor
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland
autor
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland
autor
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland
autor
- Department of Metal Science and Powder Metallurgy, Faculty of Metal Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland
autor
- Department of Computerized Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, 76019, Ukraine
Bibliografia
- 1. Bembenek M, Kudelski R, Pawlik J, Kowalski Ł. The influence of CNC turning with VBMT, RCMX, 3ER, and MGMN type indexable inserts on West African ebony/diospyros crassiflora, san domingo boxwood/Phyllostylon brasiliense, rio rosewood/ Dalbergia nigra, beechwood/Fagus sylvatica, oakwood/Quercus robur, and pinewood/Pinus silvestris surface roughness. Materials. 2021;14(19):5625.
- 2. Abdullah A, Chia L, Samad Z. The effect of feed rate and cutting speed to surface roughness. Asian Journal of Scientific Research. 2008;1(1):12–21.
- 3. Biszczanik A, Talaśka K, Wilczyński D. Analysis of the adhesive spread and the thickness of the adhesive bonded joint depending on the compressive force applied to bonded materials with different surface structure. International Journal of Adhesion and Adhesives. 2022;114:103081
- 4. Saini A, Chauhan P, Pabla B, Dhami S. Multiprocess parameter optimization in face milling of Ti6Al4V alloy using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2018;232(9):1590–602.
- 5. Bhogal SS, Sindhu C, Dhami SS, Pabla B. Minimization of surface roughness and tool vibration in CNC milling operation. Journal of Optimization. 2015;2015.
- 6. Black JT, Kohser RA. DeGarmo’s materials and processes in manufacturing. John Wiley & Sons; 2017.
- 7. Chen J, Huang B. An in-process neural network based surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations. The International Journal of Advanced Manufacturing Technology. 2003;21(5):339–47.
- 8. Azadi Moghaddam M, Kolahan F. Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts. Journal of Industrial Engineering International. 2016;12:199–209.
- 9. Öktem H, Erzurumlu T, Çöl M. A study of the Taguchi optimization method for surface roughness in finish milling of mold surfaces. The International Journal of Advanced Manufacturing Technology. 2006;28:694–700.
- 10. Bagci E, Aykut Ş. A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6). The International Journal of Advanced Manu- facturing Technology. 2006;29:940–7.
- 11. Ding T, Zhang S, Wang Y, Zhu X. Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel. The International Journal of Advanced Manufacturing Technology. 2010;51:45–55.
- 12. Lazkano X, Aristimuño PX, Aizpuru O, Arrazola PJ. Roughness maps to determine the optimum proces window parameters in face milling. International Journal of Mechanical Sciences. 2022;221:107191.
- 13. Bektaş BS, Samtaş G. Optimisation of cutting parameters in face milling of cryogenic treated 6061 aluminium alloy and effects on surface roughness, wear, and cutting temperatures. Surface Topography: Metrology and Properties. 2022;10(2):025013.
- 14. Fratila D, Caizar C. Application of Taguchi method to selection of optimal lubrication and cutting conditions in face milling of AlMg3. Journal of Cleaner Production. 2011;19(6–7):640–5.
- 15. Thanasuptawee U, Thakhamwang C, Siwadamrongpong S. Evaluation of Face Milling Operation Parameters on Surface Roughness of Crankcase Housing by Two Level Factorial Design with Center Points. In: Key Engineering Materials. Trans Tech Publ; 2018. p. 105–10.
- 16. Rahman AM, Rob SA, Srivastava AK. Modeling and optimization of process parameters in face milling of Ti6Al4V alloy using Taguchi and grey relational analysis. Procedia Manufacturing. 2021;53:204–12.
- 17. Ropyak LY, Vytvytskyi V, Velychkovych A, Pryhorovska T, Shovkoplias M. Study on grinding mode effect on external conical thread quality. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2021. p. 012014.
- 18. Siller H, Vila C, Rodríguez C, Abellán J. Study of face milling of hardened AISI D3 steel with a special design of carbide tools. The International Journal of Advanced Manufacturing Technology. 2009;40:12–25.
- 19. Selaimia AA, Yallese MA, Bensouilah H, Meddour Ik, Khattabi R, Mabrouki T. Modeling and optimization in dry face milling of X2CrNi18-9 austenitic stainless steel using RMS and desirability approach. Measurement. 2017;107:53–67.
- 20. Zhang C, Zhao B, Zhao C. Effect of ultrasonic vibration-assisted face milling on the surface microstructure and tribological properties. Journal of Vibroengineering. 2022;24(1):1–17.
- 21. Miko E, Nowakowski Ł. Vibrations in the machining system of the vertical machining center. Procedia Engineering. 2012;39:405–13.
- 22. Airao J, Chaudhary B, Bajpai V, Khanna N. An experimental study of surface roughness variation in end milling of super duplex 2507 stainless steel. Materials Today: Proceedings. 2018;5(2):3682–9.
- 23. Du F, He L, Zhou T, Tian P, Zou Z, Zhou X. Analysis of droplet characteristics and cooling lubrication effects in MQL milling of 316L stainless steel. Journal of Materials Research and Technology. 2022;19:4832–56.
- 24. Pimenov DY, Hassui A, Wojciechowski S, Mia M, Magri A, Suyama DI, et al. Effect of the relative position of the face milling tool towards the work piece on machined surface roughness and milling dynamics. Applied Sciences. 2019;9(5):842.
- 25. Nguyen NT, Tien DH, Tung NT, Luan ND. Analysis of tool wear and surface roughness in high-speed milling process of aluminum alloy Al6061. EUREKA: Physics and Engineering,(3). 2021;71–84.
- 26. Płodzień M, Żyłka Ł, Sułkowicz P, Żak K, Wojciechowski S. High-performance face milling of 42CrMo4 steel: influence of entering angle on the measured surface roughness, cutting force and vibration amplitude. Materials. 2021;14(9):2196.
- 27. Razfar MR, Farshbaf Zinati R, Haghshenas M. Optimum surface roughness prediction in face milling by using neural network and harmony search algorithm. The International Journal of Advanced Manufacturing Technology. 2011;52:487–95
- 28. Samtaş G. Measurement and evaluation of Surface roughness based on optic system using image processing and artificial neural network. The International Journal of Advanced Manufacturing Technology. 2014;73:353–64.
- 29. Shatskyi I, Ropyak LY, Makoviichuk M. Strength optimization of a two-layer coating for the particular local loading conditions. Strength of Materials. 2016;48(5):726–30.
- 30. Bembenek M, Makoviichuk M, Shatskyi I, Ropyak L, Pritula I, Gryn L, et al. Optical and Mechanical Properties of Layered Infrared Interference Filters. Sensors. 2022;22(21):8105.
- 31. Dutkiewicz M, Velychkovych A, Shatskyi I, Shopa V. Efficient model of the interaction of elastomeric filler with an open shell and a chrome-plated shaft in a dry friction damper. Materials. 2022;15(13):4671.
- 32. Metallo. 304 Stainless Steel. Metallo Kreasi Bersama. Available from: https://kreasimetallobersama. co.id/304-stainless-steel/
- 33. Agrawal H, Sharma P, Tiwari P, Taiwade R, Dayal R. Evaluation of self-healing behaviour of AISI 304 stainless steel. Transactions of the Indian Institute of Metals. 2015;68:501–11.
- 34. Shatskyi I, Shopa V, Velychkovych A. Development of full-strength elastic element section with open shell. Strength of Materials. 2021;53:277–82.
- 35. Shatskyi I, Vytvytskyi I, Senyushkovych M, Velychkovych A. Modelling and improvement of the design of hinged centralizer for casing. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2019. p. 012073.
- 36. Bazaluk O, Dubei O, Ropyak L, Shovkoplias M, Pryhorovska T, Lozynskyi V. Strategy of compatible use of jet and plunger pump with chrome parts in oil well. Energies. 2021;15(1):83.
- 37. Murzin SP, Balyakin VB, Liedl G, Melnikov AA, Fürbacher R. Improving tribological properties of stainless steel surfaces by femtosecond laser irradiation. Coatings. 2020;10(7):606.
- 38. Grabowski M, Skoczypiec S, Wyszynski D. A Study on microturning with electrochemical assistance of the cutting process. Micromachines. 2018;9(7):357.
- 39. Thyssenkrupp. Material Data Sheet 1.4301-304. thyssenkrupp Materials (UK) Ltd, 2018. Available from: https://d2zo35mdb530wx.cloudfront. net/_legacy/UCPthyssenkruppBAMXUK/assets. files/material-data-sheets/stainless-steel/stainless- steel-1.4301-304.pdf
- 40. 40. Kumar A, Sharma R, Kumar S, Verma P. A review on machining performance of AISI 304 steel. Materials Today: Proceedings. 2022;56:2945–51.
- 41. Standardization IO for. Geometrical Product Specifications (GPS)–Surface Texture: Profile Method– Rules and Procedures for the Assessment of Surface Texture. ISO; 1996.
- 42. Standardization IO for. Geometrical Product Specifications (GPS) – Surface Texture: Profile Method– Nominal Characteristics of Contact (Stylus) Instruments. ISO; 1996.
- 43. Zaleski K, Matuszak J. Badania porównawcze wpływu parametrów technologicznych frezowania wybranych stopów tytanu na moment skrawania i chropowatość obrobionej powierzchni. Zeszyty Naukowe Politechniki Rzeszowskiej Mechanika, 2017.
- 44. Honghua S, Peng L, Yucan F, Jiuhua X. Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools. Chinese Journal of Aeronautics. 2012;25(5):784–90.
- 45. Bazaz SM, Ratava J, Lohtander M, Varis J. An Investigation of Factors Influencing Tool Life in the Metal Cutting Turning Process by Dimensional Analysis. Machines. 2023;11(3):393.
- 46. Okokpujie IP, Okonkwo UC. Effects of cutting parameters on surface roughness during end milling of aluminium under minimum quantity lubrication (MQL). International Journal of Science and Research. 2015;4(5):2937–42.
- 47. Lai F, Hu A, Mao K, Wu Z, Lin Y. Effect of Milling Processing Parameters on the Surface Roughness and Tool Cutting Forces of T2 Pure Copper. Micromachines. 2023;14(1):224.
- 48. Jemielniak K. Obróbka skrawaniem. Podstawy, dynamika, diagnostyka. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej; 2018.
- 49. Nowak WJ. Effect of surface roughness on oxidation resistance of stainless steel AISI 316Ti during exposure at high temperature. Journal of Materials Engineering and Performance. 2020;29:8060–9.
- 50. Dwivedi D, Lepková K, Becker T. Carbon steel corrosion: a review of key surface properties and characterization methods. RSC advances. 2017;7(8):4580–610
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-312832fe-b513-4535-b0ab-59a08fbcf768